


VLSI-SoC: FROM SYSTEMS
TO SILICON



IFIP — The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the First World
Computer Congress held in Paris the previous year. An umbrella organization for
societies working in information processing, IFIP’s aim is two-fold: to support
information processing within its member countries and to encourage technology transfer
to developing nations. As its mission statement clearly states,

IFIP’s mission is to be the leading, truly international, apolitical
organization which encourages and assists in the development,
exploitation and application of information technology for the benefit
of all people.

IFIP is a non-profitmaking organization, run almost solely by 2500 volunteers. It operates
through a number of technical committees, which organize events and publications.
IFIP’s events range from an international congress to local seminars, but the most
important are:

* The IFIP World Computer Congress, held every second year;
* Open conferences;
* Working conferences.

The flagship event is the IFIP World Computer Congress, at which both invited and
contributed papers are presented. Contributed papers are rigorously refereed and the
rejection rate is high.

As with the Congress, participation in the open conferences is open to all and papers may
be invited or submitted. Again, submitted papers are stringently refereed.

The working conferences are structured differently. They are usually run by a working
group and attendance is small and by invitation only. Their purpose is to create an
atmosphere conducive to innovation and development. Refereeing is less rigorous and
papers are subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP World
Computer Congress and at open conferences are published as conference proceedings,
while the results of the working conferences are often published as collections of selected
and edited papers.

Any national society whose primary activity is in information may apply to become a full
member of IFIP, although full membership is restricted to one society per country. Full
members are entitled to vote at the annual General Assembly, National societies
preferring a less committed involvement may apply for associate or corresponding
membership. Associate members enjoy the same benefits as full members, but without
voting rights. Corresponding members are not represented in IFIP bodies. Affiliated
membership is open to non-national societies, and individual and honorary membership
schemes are also offered.



VLSI-SoC: FROM SYSTEMS
TO SILICON

Proceedings of IFIP TC 10, WG 10.5, Thirteenth
International Conference on Very Large Scale
Integration of System on Chip (VLSI-SoC 2005),
October 17-19, 2005, Perth, Australia

Edited by

Ricardo Reis
Universidade Federal do Rio Grande do Sul, Brazil

Adam Osseiran
Edith Cowan University, Australia

Hans-Joerg Pfleiderer
ULM University, Germany

@ Springer



Edited by
R. Reis, A. Osseiran, and H.-J. Pfleiderer

Library of Congress Control Number: 2007930377

VLSI-SoC: From Systems to Silicon

p- cm. (IFIP International Federation for Information Processing, a Springer Series in
Computer Science)

ISSN: 1571-5736 / 1861-2288 (Internet)
ISBN: 13: 978-0-387-73660-0
eISBN: 13: 978-0-387-73661-7

Printed on acid-free paper

Copyright © 2007 by International Federation for Information Processing.

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

987654321

springer.com



CONTENTS

Preface

Molecular Electronics — Devices and Circuits Technology
Paul Franzon, David Nackashi, Christian Amsinck, Neil DiSpigna,
Sachin Sonkusale

Improving DPA Resistance of Quasi Delay Insensitive Circuits
Using Randomly Time-shifted Acknowledgement Signals
Fraidy Bouesse, Marc Renaudin, Gilles Sicard

A Comparison of Layout Implementations of Pipelined and Non-
Pipelined Signed Radix-4 Array Multiplier and Modified Booth
Multiplier Architectures

Leonardo L. de Oliveira, Cristiano Santos, Daniel Ferrao,

Eduardo Costa, José Monteiro, Jodo Baptista Martins, Sergio Bampi,

Ricardo Reis

Defragmentation Algorithms for Partially Reconfigurable Hardware
Markus Koester, Heiko Kalte, Mario Porrmann, Ulrich Riickert

Technology Mapping for Area Optimized Quasi Delay Insensitive
Circuits
Bertrand Folco, Vivian Brégier, Laurent Fesquet, Marc Renaudin

3D-SoftChip: A Novel 3D Vertically Integrated Adaptive
Computing System
Chul Kim, Alex Rassau, Stefan Lachowicz, Saeid Nooshabadi,
Kamran Eshraghian

X

11

25

41

55

71



vi Contents

Caronte: A methodology for the Implementation of Partially
dynamically Self-Reconfiguring Systems on FPGA Platforms
Alberto Donato, Fabrizio Ferrandi, Massimo Redaelli,

Marco Domenico Santambrogio, Donatella Sciuto

A Methodology for Reliability Enhancement of Nanometer-Scale
Digital Systems Based on a-priori Functional Fault-Tolerance
Analysis

Milos Stanisavijevic, Alexandre Schmid, Yusuf Leblebici

Issues in Model Reduction of Power Grids
Jodo M. S. Silva, L. Miguel Silveira

A Traffic Injection Methodology with Support for System-Level
Synchronization

Shankar Mahadevan, Federico Angiolini, Jens Sparso,

Luca Benini, Jan Madsen

Pareto Points in SRAM Design Using the Sleepy Stack Approach
Jun Cheol Park, Vincent Mooney III

Modeling the Traffic Effect for the Application Cores Mapping
Problem onto NoCs
César A. M. Marcon, José C.S. Palma, Ney L. V. Calazans,
Fernando G. Moraes, Altamiro A. Susin, Ricardo A. L. Reis

Modular Asynchronous Network-on-Chip: Application to GALS
Systems Rapid Prototyping
Jérome Quartana, Laurent Fesquet, Marc Renaudin

A Novel MicroPhotonic Structure for Optical Header Recognition
Muhsen Aljada, Kamal Alameh, Adam Osseiran, Khalid Al-Begain

Combined Test Data Selection and Scheduling for Test Quality
Optimization under ATE Memory Depth Constraint
Erik Larsson, Stina Edbom

On-chip Pseudorandom Testing for Linear and Nonlinear MEMS
Achraf Dhayni, Salvador Mir, Libor Rufer, Ahcéne. Bounceur

87

111

127

145

163

179

195

209

221

245



Contents vil

Scan Cell Reordering for Peak Power Reduction during 267
Scan Test Cycles

N. Badereddine, P. Girard, S. Pravossoudovitch, A.Virazel,

C. Landrault

On The Design of A Dynamically Reconfigurable Function-Unit

for Error Detection and Correction 283
Thilo Pionteck, Thomas Stiefmeier, Thorsten Stoake,
Manfred Glesner

Exact BDD Minimization for Path-Related Objective Functions 299

Riidiger Ebendt, Rolf Drechsler

Current Mask Generation: an Analog Circuit to Thwart DPA

Attacks 317
Daniel Mesquita, Jean-Denis Techer, Lionel Torres, Michel
Robert, Guy Cathehras, Gilles Sassatelli, Fernando Moraes

A Transistor Placement Technique Using Genetic Algorithm and
Analytical Programming 331
Cristiano Lazzari, Lorena Anghel, Ricardo A. L. Reis



PREFACE

This book contains extended and revised versions of the best
papers that were presented during the thirteenth edition of the IFIP
TC10/WG10.5 International Conference on Very Large Scale
Integration, a Global System-on-a-Chip Design & CAD conference.
The 13th conference was held at the Parmelia Hilton Hotel, Perth,
Western Australia (October 17-19, 2005). Previous conferences have
taken place in Edinburgh, Trondheim, Vancouver, Munich, Grenoble,
Tokyo, Gramado, Lisbon, Montpellier and Darmstadt.

The purpose of this conference, sponsored by IFIP TC 10 Working
Group 10.5, is to provide a forum to exchange ideas and show
industrial and academic research results in the field of micro-
electronics design. The current trend toward increasing chip integra-
tion and technology process advancements brings about stimulating
new challenges both at the physical and system-design levels, as
well in the test of these systems. VLSI-SOC conferences aim to
address these exciting new issues.

The 2005 edition of VLSI-SoC maintained the traditional structure,
which has been successful at the previous VLSI-SOC conferences.
The quality of submissions (107 papers from 26 countries) made the
selection process difficult, but finally 63 papers and 25 posters were
accepted for presentation in VLSI-SoC 2005. Out of the 63 full papers
presented at the conference, 20 were chosen by a selection committee
to have an extended and revised version included in this book. These
selected papers came from Australia, Brazil, France, Germany, Italy,
Korea, Portugal, Sweden, Switzerland, United Kingdom and the
United States of America.



X Preface

Furthermore, this book includes an excellent paper entitled
“Molecular Electronics — Devices and Circuits Technology” presented
at the conference, as an invited talk, by Professor Paul Franzon from
North Carolina State University.

VLSI-SoC 2005 was the culmination of many dedicated
volunteers: paper authors, reviewers, session chairs, invited speakers
and various committee chairs, especially the local arrangements
organizers. We thank them all for their contribution.

This book is intended for the VLSI community mainly to whom
that did not have the chance to take part in the VLSI-SOC 2005
Conference. The papers were selected to cover a wide variety of
excellence in VLSI technology and the advanced research they
describe. We hope you will enjoy reading this book and find it useful
in your professional life and to the development of the VLSI
community as a whole.

The editors

April 2007



Molecular Electronics — Devices and Circuits
Technology

Paul Franzon, David Nackashi, Christian Amsinck, Neil
DiSpigna, Sachin Sonkusale
Department of Electrical and Computer Engineering
North Carolina State University, Raleigh, NC, USA
paulf@ncsu.edu

Abstract. Molecular electronics holds significant potential to outscale
bulk electronic devices. However, practical issues have limited that
potential to date. This paper reviews the function and design of
molecular electronics and evaluates results to date in a circuits context.

1. Introduction

Molecular electronics has several potential advantages for being of interest as an
electronic element. It has small size, typically on the range of a few nm, well below
the total size projected for any FET. A second advantage is that molecules can self
assemble onto surfaces, a very low-cost process. Their third advantage is that they
can be designed at the atomic level, a feat not possible with bulk devices. Atomic
level design permits a wide range of devices to be investigated, and potentially leads
to precise control of electronic properties. For example, switching between isomers
of the same chemistry should lead to radically different device properties.

This paper presents a two-level overview of molecular electronics. Section 2
focuses on device physics and understanding, while Section 3 evaluates some of
these devices within a circuit’s context.

2. Molecular Devices

Since the first suggestion that molecular elements could be designed to
control electronic properties in a circuit [1], the vast majority of research in
molecular electronics has focused on measuring and predicting electronic transport
through organic devices. Organic materials of all types have been studied, including
metallic and semiconducting carbon nanotubes, silicon nanowires, oligo(phenylene
ethnylene) (OPE) based bistable molecular switches, insulating alkanethiol chains,

Franzon, P., Nackashi, D., Amsinck, C., DiSpigna, N., Sonkusale, S., 2007, in IFIP International Federation
for Information Processing, Volume 240, VLSI-SoC: From Systems to Silicon, eds. Reis, R., Osseiran, A.,
Pfleiderer, H-J., (Boston: Springer), pp. 1-10.
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slightly more conductive OPEs and oligo(phenylene vinylene)s (OPVs), and charge-
storage molecular systems such as ferrocenes. Understanding electron transport and
charge storage is extremely important to advance the process of engineering
molecules for specific applications.

Where silicon device characteristics are engineered by varying the carrier
density through doping techniques, designing molecular devices involves modifying
electronic wavefunctions at a metal-molecule-metal junction [2] However, as silicon
devices continue to shrink, the current modeling techniques become less accurate as
the channel lengths no longer exhibit bulk properties [3]. This has resulted in a great
deal of harmony between the fields of silicon nanoelectronics and molecular
electronics, with each group leveraging off the knowledge created by the other.

Most of the molecular electronic compounds listed above are only just a
few angstroms to tens of angstroms in length. With only a few atoms involved in
electron transfer, the notion of a density of states becomes less accurate and the
properties of these molecules are better described by the location and energy gaps of
their highest occupied molecular orbital (HOMO) and lowest unoccupied molecular
orbital (LUMO). With a few exceptions such as metallic and semiconducting carbon
nanotubes, it is expected that the Fermi levels of the metallic contacts will lie within
the HOMO-LUMO gap of most molecules. This is illustrated in Figure 1, where the
energy gap within most molecules is likely to be approximately 2-3 eV.

EMPTY STATES

f
Er Gapl- 2.3 eV Ep
FILLED STATES o

Fig. 1. Metal-Molecule-Metal junction. From Samanta et al.[4], “Electronic conduction
through organic molecules.”

With this model, it is expected that the primary mode of electron transfer
will be tunneling, rather than propagation. A simple approximation for tunneling
current through a molecular junction can be modeled using the expression, kg = kee 4,
where kgr is the rate of electron transfer, d is the barrier width (length of the
molecule), and f is a constant defined by the electronic structure of the organic layer.
This approximation simply states that for set of similar molecules varying in length
(such as alkanethiols with varying numbers of methylene groups), the current density
(at a given voltage) across the junction will exponentially decrease as the molecular
length increases. This is seen quite clearly in alkane chain conductivity research
using mercury drop electrodes, nanopores and STM analysis. However comparing
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two structurally different molecules whose lengths are the same, research has shown
that the tunneling currents can be very different. This has lead to the belief that the
parameter f§ can be used to describe the electron transmission properties of different
molecules.

Experimental research has shown that molecules exhibiting a highly =-
conjugated structure (such as OPEs and OPVs), as compared to the o-bonded alkane
chains, have a much lower gap resistance in metal-molecule-metal structures. This
suggests that the barrier to electron transfer is lowered within molecules containing
delocalized electron clouds. To more accurately account for scattering (which is
neglected in the tunneling approximation) and the specific electronic structure for
various molecules, many theorists use Density Functional and Green’s Function
based approaches for more accurate evaluations. An example of the value in these
approaches is shown in Figure 2, where the transmission properties for three
different molecules were calculated and plotted. Samanta and Datta [4] found that
the resistance of a four benzene chain molecule scaled higher as expected when
compared to a shorter, three benzene molecule. However, a three ring OPE was
found to have a lower resistance than the four ring benzene chain, even though the
OPE is a longer molecule. This was attributed to the presence of the triple bond in
the OPE, causing a more delocalized electronic structure.

In the same study, Samanta calculated the transmission properties of a two
ring benzene chain as a function of the ring orientation to each other. Shown
in Figure 3, the most conductive state is when the molecule has no offset, or
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Fig. 2. Green-function analysis of electronic transmission through different molecules.
From Samanta, et al. [4], “Electronic conduction through organic molecules.”
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is planar, and the least conductive state is when the rings are 90° out of phase. This
theoretical work further suggests that delocalized, overlapping p orbitals play an
import part in lowering the barrier for electronic conduction. Experimentally, this
was also shown in two separate test structures comparing OPE and OPV molecules.
OPV molecules, known to be more planar and exhibiting less bond-length
alternation, were determined to have a slightly lower gap resistance.

Many have suggested using a third gate electrode to modulate transmission
properties through a molecule by twisting or bending the molecular backbone,
however concentrating a strong enough field in a gap less than 50 angstroms is
extremely difficult. A theoretical study of a molecular three terminal device was
performed by Datta' at Purdue, using a single benzene ring as the conductive
channel. To get good control of the channel, i.e., to get a high enough field to
modulate the device, the equivalent gate oxide would need to be less than 10% of the
channel length. This suggests that the gate electrode would need to be within two
angstroms of the benzene ring, placed within an atomic level of accuracy. For these

reasons, most research into molecular electronics has focused on two terminal
devices, primarily switches.
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Fig. 3. Ring orientation effects on the transmission property. From Samanta, et al. [4],
“Electronic conduction through organic molecules.”

The growing body of theoretical work and tools used to generate molecular
models has lead to many suggestions for novel, molecular devices. Shown in Figure
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4 are several examples of these devices, which include switches, wires, rectifiers and
storage devices. Of course, the only way to determine the validity of theoretical
models used to generate these suggestions is through experimental analysis, an area
just now developing on its own. The contact to the molecule itself, atomic in nature,
is just as much a part of the device as the organic structure itself. Although
theoretical studies have helped to understand the nature of the metal-molecular
contact, finding a consistent, scalable and repeatable test bed for comparing differ-
ent molecules has proven to be the most challenging aspect of molecular
characterization.

3. Circuits and Scaling for Molecular Electronics

It can be argued that to be a true successor technology to CMOS, molecular
electronics needs to provide two of more generations of scaling beyond the silicon 18
nm node. That is provide continued scaling in some or more metrics of fundamental
performance in computing, particularly computation throughput, power per
operation, and cost per unit throughput; while achieving similar system availability
and reliability rates to those achieved today.

These are challenging metrics to evaluate especially for an immature tech-
nology. This section will start off by reviewing the basics behind molecular
electronics, and provide a summary evaluation of the potential, and roadblocks, for
molecular electronics to provide continued scaling beyond the end of CMOS, in
these metrics.

For reasons discussed above, all practical proposed and demonstrated mole-
cular electronic devices are two terminal devices. For example, the illustration
in Figure 5 is that of an atomic level presentation of benzene thiol molecules
assembled between two gold contacts. The density potential of this technology is
evident when it is realized that the molecule illustrated in Figure 5 is only 3.2 nm
long. Generally speaking the principle of operation behind these devices is that a
change in the longitudinal electric field causes a temporary or permanent change in
the electron cloud configuration around the molecule and thus its conductivity. The
molecule thus behaves like a tunneling diode. Measured results have shown
characteristics that include non-rectifying diodes, rectifying diodes (by using
different metals in the two contacts), diodes displaying negative differential
resistance (NDR) and two-state (on-off) diodes, with an on-state and an off-state
(Figure 6) [1]. Note that in Figure 6 only the rectifying version of the two-state
diode is shown, as it is much more useful than the non-rectifying version. Of these
characteristics devices, only the NDR and the rectifying on-off diodes are useful for
logic, and even then present challenges over their 3-termimal predecessors.

In order to evaluate the potential of these devices, NAND gate configu-
rations were compared with that of a ~2018 18 nm node CMOS NAND gate.
Figure 7 shows a possible circuit topology that uses the NDR diode to make a
NAND gate and a circuit topology to build a programmable logic array using
rectifying on-off diodes (only the on diodes are shown). Though the NDR-based
circuit is impractical, it is included for completeness. The PLA structure requires a
gain element to be practical. It is assumed that it is rebuffered using CMOS gates.
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Fig. 4. Suggested molecular electronic devices. From Joachim et al. [6] “Electronics
using hybrid-molecular and mono-molecular devices.”

These three circuit topologies are evaluated against some useful performance-
related metrics in Table 1. The values for the 18 nm node NAND gate are taken
from, or calculated using, data in the International Technology Roadmap for
Semiconductors. The values for the molecular circuits are calculated using
simple techniques and are likely to be wrong by several orders of magnitude. The
area estimate for the PLA is made assuming an 8 nm wire imprint technology and
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(very pessimistically) and 2x area overhead for the peripheral circuits. The
molecular device is assumed to have an on current of 500 nA and an off current of 50

nA. The delay and power estimates are made from circuit level calculations, not
from the underlying physics.

Reset

InA

l_\_/\/\/\._._AAA

Fig. 5. Benzene Thiol molecules between two gold contacts. (Courtesy, Seminario).
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Fig. 6. Generic IV characteristics for molecular diodes.
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Fig. 7. Examples of circuits built using NDR (left side) and rectifying on-off diodes (right

side). Source[7].

Table 1. Area and Performance Estimates for CMOS and molecular nanotechnologies.

Circuit Area Energy Leakage Delay
per 010 Power
transition
18 nm 2-input 0.2 10177 107W 5ps
NAND gate sq.um
NDR gate 0.1 1007 10w 1 us
sq.um?
2-input NAND 0.01 1007 107W 100 ps
equivalent sq.um.

within larger
PLA

Unsurprisingly, given the use of two-terminal devices, the only aspect in

which molecular electronics outperforms 18 nm CMOS is area.

Delay is

significantly worse, and power comparable. The energy*delay product is worst in

the molecular case, while the area*delay product is comparable.

This analysis leads to the tentative conclusion that most likely the best
application for molecular electronics is in large relatively slow memories, and

devices that benefit from such memories.

Then the key question is what is the real

density likely to be achieved by a molecular memory. There are two sub questions
here — what is the peak density and what is the achievable density when peripheral
circuits are accounted for?
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The peak density is related to the smallest wire that can be imprinted — likely to
be around 5 nm wide. This gives a unit cell size of 10x10 nm, or a device density of
10,000 devices per sq.um., equivalent to a peak density of 10'> devices per sq.cm., or
more than 10 full length DVD movies on a chip!

However, the achievable density is limited by the overhead required for
address decoders, sense-amps, etc. This, in turn, is limited by the largest subarray
that can be built and read with sufficiently low error rate. This has been analyzed
and the results presented in Table 2. The achievable sub-array size depends solely
on the on:off ratio achieved by the diode. For reference, measured data seems to
indicate on:off ratios today of around 10:1 for truly molecular devices. In contrast
today’s DRAMs are built using 10,000 x 10,000 subarrays. It is clear that larger
on:off ratios are needed to achieve reasonable overheads. Fortunately, a number of
nano-engineered device concepts are under investigation that has potential to achieve
the required on:off ratio.

Table 2. The maximum sub-array size that can be built for different molecular diode on:off
ratios.

On:off Ratio Max. Array
7:1 64x64

13:1 128x128
100:1 1225x1225
1000:1 12kx12k
8000:1 IMx1M

4. Conclusions

While molecular electronics holds significant potential, achieving that
potential in a technologically useful fashion is very challenging. Challenges
include the following. First there is the difficulty of integrating molecules with bulk
materials in ways that the limitations of the latter do not dominate the device
operation. This is why filament switching dominates many of the collected results.
Second is achieving the challenge of achieving sufficient device performance such
that molecules can outscale silicon in a metric beside size. However, with increased
understanding of molecular design and performance, together with improving
abilities to fabricate nano-ordered materials, molecular electronics is still a promising
future technology.
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Improving DPA Resistance of Quasi Delay
Insensitive Circuits Using Randomly Time-
shifted Acknowledgment Signals

F. Bouesse, M. Renaudin, G. Sicard
TIMA Laboratory, Concurent Integrated Systems Group
26 av. Félix Viallet, 38031 Grenoble Cedex
fraidy.bouesse@imag.fr

Abstract. The purpose of this paper is to propose a design technique for
improving the resistance of the Quasi Delay Insensitive (QDI) Asynchronous
logic against Differential Power Analysis Attacks. This countermeasure
exploits the properties of the QDI circuit acknowledgement signals to
introduce temporal variations so as to randomly desynchronize the data
processing times. The efficiency of the countermeasure, in terms of DPA
resistance, is formally presented and analyzed. Electrical simulations
performed on a DES crypto-processor confirm the relevancy of the approach,
showing a drastic reduction of the DPA peaks, thus increasing the complexity
of a DPA attack on QDI asynchronous circuits.

1 Introduction and motivations

Nowadays, the possibilities offered by all recent powerful side-channel attacks to
access to confidential information, constrain secure systems providers to develop
new resistant systems against these attacks. Among these new hardware
cryptanalysis attacks, there is the Differential Power Analysis (DPA) which is one of
the most powerful and low cost attack. The main idea behind DPA is that there
exists a correlation between data processed by the design and the observable power
consumption. In 1998 Paul Kocher [1] demonstrated how this correlation can be
exploited using statistical means to retrace secret key information.

It is in this context that the properties of Self-timed logic have been exploited in
order to propose efficient counter-measures against DPA attacks [2][3].

All results from the analysis of Self-timed logic particularly the Quasi Delay
Insensitive asynchronous logic demonstrated the potentiality of this type of logic to
increase the chip’s resistance [4][5].

Bouesse, F., Renaudin, M., Sicard, G., 2007, in IFIP International Federation for Information Processing,
Volume 240, VLSI-SoC: From Systems to Silicon, eds. Reis, R., Osseiran, A., Pfleiderer, H-J., (Boston:
Springer), pp. 11-24.
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However, paper [6] reported that, even if the QDI asynchronous logic increases
the resistance of the chip, there still exists some residual sources of leakage that can
be used to succeed the attack.

The objective of this paper is to make a DPA attack impossible or impracticable
with standard equipment by increasing the complexity of the attack. For doing so, we
introduce randomly time shifted (RTS) acknowledgment signals in the QDI
asynchronous logic in order to add noise in chip’s power consumption. Indeed, the
use of a RTS acknowledgement signal in an asynchronous Quasi Delay Insensitive
block enables us to desynchronize the data processing time, so as to compute the
blocks’ output channels at random times. As the DPA attack requires the signals to
be synchronized with respect to a fixed time instant for data analysis [1][7], this
desynchronization makes the DPA attack more difficult as it is proved in this paper.

We present in the first part of the paper (section 2), the properties of Quasi Delay
Insensitive asynchronous logic, especially the properties of the acknowledgment
signal. Section 3 first introduces the formal analysis of the DPA attack. It then
presents the desynchronization technique based on RTS acknowledgement signals
and formalizes its efficiency in terms of DPA resistance. Finally, sections 4 and 5
illustrate the technique using electrical simulations performed on the well known
Data Encryption Standard (DES) architecture. Section 6 concludes the paper and
gives some prospects.

2 Quasi Delay Insensitive Asynchronous logic: the
acknowledgment signal

This section recalls the basic characteristics of an asynchronous circuit,
particularly the rule of the acknowledgement signal in the QDI asynchronous logic.

Because this type of circuit does not have a global signal which samples the data
at the same time, asynchronous circuits require a special protocol to perform a
communication between its modules. The behavior of an asynchronous circuit is
similar to a data-flow model. The asynchronous module, as described in figure 1 and
which can actually be of any complexity, receives data from its input channels
(request signal), processes them, and then sends the results through its output
channels. Therefore, a module is activated when it senses the presence of incoming
data. This point-to-point communication is realized with a protocol implemented in
the module itself. Such protocols necessitate a bi-directional signaling between both
modules (request and acknowledgement): it is called handshaking protocols.
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Request Request Request
— — —
Asynchronous Asynchronous
Module Module

Acknowledgement Acknowledgement Acknowledgement
— € ——

Fig. 1. Handshake based communication between modules.

The basis of the sequencing rules of asynchronous circuits lies in the
handshaking protocols. Among the two mains classes of protocols, only the four-
phase protocol is considered and described in this work. It is the most widely used
and efficiently implemented in CMOS [8].

Data >< Valid | Data ><Invalid Data >< Valid Data
Ack / \ /

Phase 1 Phase 2 Phase 3 Phase 4
Com. "n" Com. "n+1"

======

sana

Fig. 2. Four-phase handshaking protocol.

In the first phase (Phase 1) data are detected by the receiver when their values
change from invalid to valid states. Then follows the second phase where the
receiver sets to one the acknowledgement signal. The sender invalidates all data in
the third phase. Finally the receiver resets the acknowledgment signal which
completes the return to zero phase.

Dedicated logic and special encoding are necessary for sensing data
validity/invalidity and for generating the acknowledgement signal. Request for
computation corresponds to data detection and the reset of the acknowledgment
signal means that the computation is completed and the communication is finished.

In QDI asynchronous logic, if one bit has to be transferred through a channel
with a four-phase protocol, two wires are needed to encode its different values. This
is called dual-rail encoding (table 1).
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Table 1. Dual rail encoding of the three states required to communicate 1 bit.

Channel data A0 Al
0
1

Invalid

—| o o ~

0
1
0
1

Unused

This encoding can be extended to N-rail (1-to-N).

The acknowledgement signal is generated using the data-encoding. The dual-rail
encoded outputs are sensed with Nor gates for generating the acknowledgment
signal, as illustrated in figure 3.

Asynchronous
Module
B

B_ack Asynchronous
— Module
A

El Al Kcy Bl

Fig. 3. 1-bit Half-buffer implementing a four-phase protocol
(Cr is a Muller gate with a reset signal)

The Muller C-element’s truth table and symbol are given in Figure 4.

Symbol Truth table
- X | Y| Z
0 0 0
_—
0 1 Z!
Equation 1 0 7-1
Z=XY + Z1(X+Y) 1 1 1

Fig. 4. Truth table and symbol of the C-element.

Figure 3 illustrates the implementation of two asynchronous modules (4 and B)
with their memory elements called half-buffer. The half-buffer implements a four-
phase protocol. When the acknowledgement signal of module B (B_ack) is set, it
means that the module is ready to receive data. If a data is transferred from module 4
to module B, module B computes its outputs and resets its acknowledgement signal
(B_ack). Module B is then ready to receive invalid data from module 4.
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In this operating mode, the acknowledgment signal can be considered as a local
enable signal which controls data storage locally. Note that this mechanism does not
need any timing assumption to ensure functional correctness; it is simply sensitive to
events. Hence, the acknowledgment signal enables to control the activation of the
computation in a given module, as well as its time instant.

The technique proposed in this paper, exploits this property by inserting random
delays in the acknowledgement signals. It is called Randomly Time-Shifted
acknowledgment signals. It basically desynchronizes the power consumption curves
making the differential power analysis more difficult as proved in the next section.

3 DPA and RTS acknowledgment signal on QDI asynchronous
circuits: Formal Approach

In this section, we formally introduce the basis of the DPA attack [7] and
formally analyse the effects of the RTS acknowledgement signal on QDI
asynchronous circuits in terms of DPA resistance.

3.1 Differential Power Analysis Attack

The functional hypothesis of DPA attack is the existing correlation between the
data processed by the circuitry and its power consumption. There are three main
phases for processing the DPA attack: the choice of the selection function D, the data
collection phase and the data analysis phase.

Phase I: In the first step, the selection function is defined by finding blocks in

the architecture which depend on some parts of the key. Such a function in the

DES algorithm for example can be defined as follows:

D(C,P,K,)= SBOXI(P,@K,)
C, = first bit of SBOX1 function.
P, = 6-bit plain-text-input of the SBOXI function.
K, = 6-bit of the first round’s subkey: key to guess.
SBOXI1 = a substitution function of DES with a 4-bit output.

Phase 2: The second step consists in collecting the discrete time power signal
Si(t) and the corresponding ciphertext outputs (CT0,) for each of the N plaintext
inputs (PT1;). The power signal Sy(t;) represents the power consumption of the
selection function: index i corresponds to the PTJ; plaintext stimulus and time ¢
corresponds to the time where the analysis takes place.

Phase 3: The right key is guessed in the third phase. All current signals S;(;) are
split into two sets according to a selection function D.
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Se=.aplp =0}
Sl = %i(fj)uj = 1}

The average power signal of each set is given by:

M

1 o
AO(tj) =m2si(tj)
o @

7

1
Al(tj)=m Si(tj)
117

Where |n,| and |n;| represent the number of power signals S;(%;) respectively in set
Sy and S;. The DPA bias signal is obtained by:

S(t)) = Ay(t)) - 4(1)) ®

If the DPA bias signal shows important peaks, it means that there is a strong
correlation between the D function and the power signal, and so the guessed key
is correct. If not, the guessed key is incorrect.

Selecting an appropriate D function is then essential in order to guess a good
secret key.

As illustrated above, the selection function D computes at time # during the
ciphering (or deciphering) process, the value of the attacked bit. When this value is
manipulated at time #, there will be at this time, a difference on the amount of
dissipated power according to the bit’s value (either one or zero).

Let’s define dy;(t) the amount of dissipated power when the attacked bit switches
to 0 at time #; by processing the plaintext input i and define d);(#;) the amount of
dissipated power when this bit switches to 1.

In reality, the values of dy(t;) and d,;(t;) correspond to the dissipated power of all
data-paths which contribute to the switching activity of the attacked bit. Each one of
these values has its weight in each average power signal 4,(t) and 4,(t;). As the goal
of the DPA attack is to compute the difference between these two values, we can
express the average power signal of these both sets 4(z) and 4,(z,) by:

At = (t)) =T 73 do (1)

1
Inol £ @

A =) =17 3 (1))

1
I,
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Therefore, the DPA signature is expressed by:
eo(tj)_gl(tj) =8(l‘/) (©)

In order to make an efficient analysis, the amplitude of the DPA signature &(t)
must be as high as possible.

A simple way to guarantee this is to use a significant number of plaintext inputs
(N). Indeed, the number of PT7Ii (the number of power signal S#)) used to
implement the attack enables to reduce the effects of the noisy signals and to
increase the probability of exciting all data-paths.

e It is well known that the signal-to-noise ratio for the averaged signal
increases as the square root of the number of curves.

SNR = ‘\/N signal

noise

O,0ise 18 the standard deviation of the noise

* Increasing the number of plaintext inputs (PTIi) allows us to ensure that all
data-paths which make switching to 0 or to 1 the attacked bit are excited.
The deal here, is to take into consideration all possible quantities dxi(tj)
which represent the switching current of the attacked bit. As the probability
of exciting all data-paths is proportional to N, bigger the value of N, better
the probability to excite all data-paths of the attacked bit is:

P(w) = %

m is generally unknown by the hacker and represents the number of data-
paths.

Therefore, the knowledge of the implementation which enables to choose the
plaintext inputs and the use of high quality instrumentation are assets that improve
the DPA attack. In fact, they considerably reduce the number of data () required for
succeeding the attack.

3.2 The RTS acknowledgement signal

The method we propose in this paper enables the designer to introduce a
temporal noise in the design in order to desynchronize the time required for
processing the attacked bit. The idea of the approach is to randomly shift in time the
current profile of the design. To achieve this goal, we randomize the
acknowledgment signal latency of the blocks of the architecture. As illustrated in
figure 5, we use a delay element controlled by a random number generator. The
design of the random number generator is out of the scope of this paper. True
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random number generator (TRNG) design is an important topic and many different
types of TRNG implementation exist [9][10].

5 5
B )
. .
Asynchronous Bl Delay Block %z | Asynchronous
Module g A % Module
A < < B

Random Generator

Fig. 5. Implementation of a random acknowledgment signal

Let’s denote n the number of possible random delays implemented in a given
architecture. n depends on the number of available acknowledgment signals (m) in
the architecture and on the number of delays (k;) implemented per acknowledgment
signal. The “n” value is computed by the following expression:

m
n= Hki
T
assuming cascaded modules.

If the acknowledgment signal is randomized # times, it means that the value of
the attacked bit is computed at » different times (). N/n represents the number of
times the attacked bit is processed at a given time #; and N/2n represents the number
of times the quantities dy(?;) and d,(t;) of this bit contribute to set S, and S,
respectively. If we consider that the N curves are equally split in both sets
(ny=n;=N/2), the average power signal of each set is now expressed by:

£ (1) = %”2 (2%4:,))

N/2n

1 1
(0= ( dl,-a,g))

The DPA bias signal is then given by the following expression:

©)

e(t) = (e, (1) = £,(t,) )+ ...+ (e,(t,) — £,(2,))

with
N/2n

£ylt,) = XAGE
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N/2n

(1) = ) 0
| =

These expressions show that, instead of having a single quantity £,(#;), we have n
different significant quantities &,(#,) which correspond to » times where the attacked
bit is processed. Moreover, it also demonstrates that each quantity &,(z) is divided by
a factor n as illustrated by the following simplification:

d_(t.
Ex(f,,-)=ni(dx,-(tj)+...+dxn(tj))g% "

with  d;(t)=...=d(t;)

It means that, although the number of significant points is increased by #, this
approach divides by n the average current peaks variations. It offers the possibility to
bring down the level of DPA bias signal closer to circuitry’s noise.

3.2 Discussion

Let’s for example implement the DPA attack using /000 plaintext inputs
(N=1000). In the standard approach where the attacked bit is processed at a unique
given time, we obtain an average of 500 current curves for each of the sets S, and ;.

Using our approach with RTS acknowledgment signals and assuming n=16 (for
example), we obtain 16 different points (in terms of time) where the attacked bit is
processed. There are 62 values d,;(t;) (N/n curves) where this bit is processed at time
(t;). Each set then contains 31 curves. When the average power signal of each set is
calculated, values d.(;) are 16 times lower than without RTS acknowledgment
signals. Hence, the contribution of d,;(#;) in current peaks variations are reduced by a
factor 16.

Therefore, to succeed the attack the hacker is obliged to significantly increase the
number of acquisitions (N) or to apply a cross-correlation function which is exactly
the goal to achieve in terms of attack’s complexity. In fact, cross-correlation remains
a useful method for synchronizing data. But to be functional, the hacker must
identify the amount of current profile of the attacked bit (d,;(#;) to be used as a
reference, and then compute cross-correlations in order to synchronize each of the N
curves with the reference. Knowing that, the cross-correlation is applied on
instantaneous current curves which contain significant quantity of noise.

To increase the difficulty of this analysis, the value of n can be significantly
increased by dealing with the values of m and £.

¢ The value of m depends on the architecture. Its value can be increased by
expanding the acknowledgment signals of the architecture. Each bit or
intermediate value of the design can be separately acknowledged. This technique
enables also to reduce the data-path latency.
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* The values of the delay depend on the time specification to cipher/decipher data.
They are bounded by the maximum ciphering/deciphering time.

Consequently, the acknowledgement signals of any asynchronous quasi delay
insensitive circuit can be exploited to introduce random delays and therefore increase
the DPA resistance of the chips.

4 Case Study: DES Crypto-processor

This section deals with the different possibilities of implementing RTS
acknowledgment signals on QDI asynchronous circuits. The DES was chosen as an
evaluation vector because the attack on this algorithm is well known.

Figure 6 represents the DES core architecture, implementing a four-phase
handshake protocol, using 1-to-N encoded data and balanced data-paths [2]. The
architecture is composed of three iterative asynchronous loops synchronized through
communicating channels. One loop for the ciphering data-path, the second for the
key data-path and the last one for the control data-path which enables the control of
the sixteen iterations of the algorithm.

For example let’s apply the technique to the five grey blocks of figure 6. Each
block has its own acknowledgement signal and the delay inserted in each
acknowledgment signal can take four values. Therefore, there are 1024 possible
delay values (n=1024). It means that (in terms of DPA resistance) the current peak
variations corresponding to d;(¢;) will be divided by 1024.

| IP (Permutation) |

| Registers L IS| Registers R

N AN AN A

v
Expansion

1

XORA48)

XOR32 <
Y| |
| IP-"(Permutation) | ; —_Acknowledgment,,
fimimmimimimms {Eﬂ: ________ Giphering data pathi Request
Output

Fig. 6. Asynchronous DES core architecture
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5 Results and Analysis: Electrical simulations

Electrical simulations enable us to analyze the electrical behaviour of the design
with high accuracy, i.e. without disturbing signal (noise). All electrical simulations
are performed with Nanosim using the HCMOS9 design kit (0.13! m) from
STMicroelectronics.

The architecture used for these electrical analysis implements one
acknowledgement signal per block. However, for the needs of illustration only the
acknowledgment signal of the inputs of the SBOXI is randomly delayed with 8
different delays. The defined selection function, used to implement the attack, is as
follows:

D(C,,P,K,)= SBOXI(P,@K,)
withn €{1,2,3,4)

The DPA attack has been implemented on the four output bits of the SBOX7 and
on the first iteration of the DES algorithm using 64 plaintext inputs (N=64). Figure 7
shows the current profile of the first iteration when the RTS acknowledgment signal
is activated and deactivated. When the delay of 13ns is used, the time required for
processing an iteration (figure 7-b) corresponds to the time required to process 3
iterations without delays (figure 7-a). Hence the ciphering time is multiplied by a
factor 3. This delay is chosen for the sake of illustration only. Given a level of DPA
resistance, the delay can be strongly decreased in practice (down to a few
nanoseconds with this technology) to reduce as much as possible the timing
overhead as well as the hardware overhead caused by the application of the
technique

a- RTS Acknowledgment signal not activated

b- RTS Acknowledgment signal activated with an
J ~ added delay of 13 ns =

il : i

4 _.'.;?thii‘r SIS TIITIIRTR TS SRS '
L M .q

: A ML Ly
! ; ; : J‘\J\N’ Lk,/ "\_n"'w]\' Lt g
T T T 1

4.1u 4.105u 4.11u 4.115u

oo

Fig. 7. Current profile of the DES QDI asynchronous architecture.
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Only the first iterations are considered
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Fig. 8. Electrical signatures when performed DPA attack on bit 4 of the SBOX1.
Only the first round is considered and computed using more than 2.100.000 point.

As the SBOXI has four output bits encoded in dual-rail, we have 8 data-paths
(from outputs to inputs) which enable to compute 8 values of d,;(#;). Let’s recall that,
dyi(t;)(dyi(t;);d (1)) corresponds to the amount of dissipated power when the attacked
bit is processed at time #;. For example, let’s consider the output bit 4 of the SBOX].

Contrary to a standard approach and due to the 8 delay shifts, the values dy,(?;)
and d,4(1;) are processed 4 times instead of being processed 32 times, so that their
weights are reduced by a factor 8 into sets S; and S,. Each of this set enables us to
calculate the average currents Ay(#;) and A,(?)).
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Figure 8 shows these average current profiles (4,(#;) and A4,(t;)) which are used to
compute the DPA bias signal (S(7,)), also shown in figure 8.

Part I of these curves represent the first encryption operations in the first iteration
(see figure 8). This part is not affected by the RTS acknowledgment signal which is
only applied on SBOX]. In fact, before computing the SBOX function, the chip first
computes IP, Expansion and Xor48 functions (figure 6), so that, in the first iteration,
these functions, are not affected by the RTS acknowledgement signal of SBOXI.
This explains why the amplitude of the average power curve starts decreasing after
part I and it clearly illustrates the effect of the RTS signal on the power curves. This
can of course be changed by activating the RTS acknowledgement signals of blocks
IP, Expansion and/or Xor48.

In the considered example, 64 PTI; curves are used to implement the attack. In
this case, obtaining the key bit from the DPA bias signal is impossible as shown in
figure 8. Indeed, there is no relevant peak in the DPA current curves (figure §-a and
8-b).

6 Conclusion

This paper presented a countermeasure against DPA based on randomly time-
shifted acknowledgment signals of asynchronous QDI circuits. The efficiency of the
countermeasure was first theoretically formalized and then demonstrated using
electrical simulations. The technique principle was illustrated on a DES architecture.

Future works will be focused on the design and fabrication of a DES prototype
implementing the RTS acknowledgement signals together with a random number
generator.
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Abstract. This paper presents performance comparisons between two
multipliers architectures. The first architecture consists of a pure array
multiplier that was modified to handle the sign bits in 2’s complement and
uses a radix-4 encoding to reduce the partial product lines. The second
architecture implemented was the widely used Modified Booth multiplier. We
describe a design methodology to physically implement these architectures in
a pipelined and non-pipelined form, obtaining area, power consumption and
delay results. Up to now only results at the logic level were presented in
previous work. The performance of pipelined array architecture is compared
with the pipelined Modified Booth. We compare the physical implementations
in terms of area, power and delay. The results show that the new pipelined
array multiplier can be significantly more efficient, with close to 16% power
savings and 55% power savings when considering non-pipelined architectures.
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1 Introduction

Multiplier modules are common to many DSP applications. The fastest types of
multipliers are parallel multipliers. Among these, the Wallace multiplier [18] is
among the fastest. However, they do not have such a regular structure as the
conventional array [11] or Booth [13] multipliers. Hence, when layout regularity,
high-performance and low power are primary concerns, Booth multipliers tend to be
the primary choice [2], [7], [9], [13], [16].

In this paper, we present layout implementations for both the Modified Booth
multiplier and the new array multiplier in non-pipelined and pipelined versions. The
pipelined version of the radix-4 architecture was implemented in order to reduce
both the critical path and useless signal transitions that are propagated through the
array. This array architecture is extended for radix 2™ encoding, which leads to a
reduction of the number of partial lines, enabling a significant improvement in
performance and power consumption.

We synthesize the multipliers by using an automatic synthesis tool, named
TROPIC [15]. In order to compare the Modified Booth and the array architectures,
both using radix-4, the ELDO — a spice simulator, part of the Mentor Graphics
environment, was used. The results show that the new array multiplier is
significantly more efficient, saving more than 50% in power consumption. This
result is very close to the results reported in [4], obtained at the logic level using a
switch-level simulator and 16% power savings considering pipelined versions.

The power reduction presented by the new array multiplier is mainly due to the
lower logic depth, which has a big impact in the amount of glitching in the circuit.
We should stress further that, in contrast to the architecture presented in [4], rasing
the radix for the Booth architecture is a difficult task, thus not being able to leverage
from the potential savings of higher radices.

This paper is organized as follows. In the next section we give an overview of
relevant work related to our work. In section 3 we present a 2’s complement binary
multiplication. After that, Section 4 briefly describes the radix-4 array multiplier.
The Modified Booth multiplier and their pipelined forms are described in Section 5.
Section 6 describes the design methodology and how area, power and delay results
are obtained. Comparisons between the radix-4 array multiplier architecture and the
Modified Booth, for both switch level and electrical level are presented in Section 7.
Finally, in Section 9 we conclude this paper, discussing the main contributions and
future work.

2 Related Work

A substantial amount of research work has been put into developing efficient
architectures for multipliers given their widespread use and complexity. Schemes
such a bisection, Baugh Wooley and Hwang [9] propose the implementation of a 2’s
complement architecture, using repetitive modules with uniform interconnection
patterns. However, an efficient VLSI realization is more difficult due to the irregular
tree-array form used. The same non-regularity aspect is observed in [13], where a
scheme of a multiplexer—based multiplier is presented. In [11] an improvement of
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this technique is observed where the architecture has a more rectangular layout than
[13].

The techniques described above have been applied to conventional array
multipliers whose operation is performed bit by bit and some times the regularity of
the multipliers is not preserved. More regular and suitable multiplier designs based
on the Booth recoding technique have been proposed [7][2][16]. The main purpose
of these designs is to increase the performance of the circuit by the reduction of the
number of partial products. In the Modified Booth algorithm approximately half of
the partial products that need added is used.

Although the Booth algorithm provides simplicity, it is sometimes difficult to
design higher radices due to the complexity to pre-compute an increasing number of
multiples of the multiplicand within the multiplier unit. In [7][16] high performance
multipliers based on higher radices are proposed. However, these circuits have little
regularity and no power savings are reported. Research work that directly targets
power reduction by using higher radices for the Booth algorithm is presented in
[2][10]. Area and power improvements are reported with a highly optimized
encoding scheme ate the circuit level. At this level of abstraction some other works
have applied complementary pass-transistor logic in their design in order to improve
the Booth encoder and full adder circuits [9][13][14].

In our work, the improvement in power has the same principal source as the
Booth architecture, the reduction of the partial product terms, while keeping the
regularity of an array multiplier. We show that our architecture can be more naturally
extended for higher radices using less logic levels and hence presenting much less
spurious transitions. We present layout implementation of pipelined and non-
pipelined versions of our multipliers.

3 Array Multipliers

In this section we describe how we derive the 2’s complement binary
multiplication. Consider two operands W-bits wide, A=Ef:l a2 and

w-1 j
B= Ej=0 b/.2 . We have that

w-1 )

AxB=2A-bj2’ (M
7=

where in turn,
w-1 )

A-bj = bj a2 2)

A conventional array multiplier [3] translates this expression directly to
hardware, where we have the W partial product rows from Equation 1, each made of
W bit level products as in Equation 2, which can be arranged in a simply, very
regular, array structure. Each bit product is simply an AND gate.

The conventional array multiplier is only applicable to unsigned operands. We
are able to show that exactly the same architecture can be used on signed operands in
2’s complement with very little changes.
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2’s complement is the most used encoding for signed operands. The most
significant bit, @y, , is the sign bit. If the number A is positive, its representation is
the same as for an unsigned number, simply A. If the number is negative, it is

w
represented as2” — A .
Conversely, the value of the operand can be computed as follows:
A= {A o =0

3)
A=-2" > a,, =1

We make the following observation that enables us simplify our architecture. Let

. ' w-2 i . ..
us define A = 2i=0 a;2", an unsigned value. For positive numbers, a,_; =0,
hence the value represented by A is A’ . For negative numbers, @, _, = 1, hence this
valueis 4—-2" = 2"+ 4")-2"=4"-2""" Then equation 3 becomes:
A > a,, =0
A= )
A-2""> a, =1

orsimply A =A'— aW_12W_1 i
What Equation 4 tell us is that the multiplication of two operands in 2’s
complement can be performed as an unsigned multiplication for (W - 1)2 of the bit

products. Let us consider the 4 possible scenarios for 4% B :

A>0,B>0: A'xB

A>0,B<0: A'xB' -A42""

A<0,B>0: A'xB - Ei:‘bsz—w )
A<0,B<0: A'xB —A2""_ T::)lbsz—Hj

which can be reduced to

w-1
AxB=A'xB -b, A2"" —a, 21)].2”””‘ ©6)
J=

The form of Equation 6 highlights:
* from the first term, that the -/ least significant bits A and B can be
treated exactly as an unsigned array multiplier;
* from the second term, that the last row of the multiplier is either non-
existent (B>0) or a subtracter of A’ shifted by W-1 bits (B<0);
* from the third term, that, at each partial product line, the most
significant bit is either 0 (A>0) or -1 (A<0).

K_z " . . . . ..
Consider now 4" = E[’”_O a;2™, where a, is a m-bit digit. For positive

numbers, the value represented by A is A’ as before. For negative numbers, this
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. i, s w- w
value is 4-2" =a, 2" +A4'-2" =4"-q, 2", since a, 277" -2

m

is the 2’s complement of a, | 2" Then we have:

A > a, =0

A=1 o " ™)
A —am_IZW > a, =1

or simply

A=A -ay a, 2" (8)

Using analogous observations as made for the binary case, from Equation 8 we
can write:

L

AxB=A'xB' - A'by b, , 2" - Ay 1w, Z b, 27 ©)
=

4 Radix-2" Array Multiplier

In this section, we summarize the methodology of [5] for the generation of
regular structures for arithmetic operators using signed radix-2™ representation and
extend it into a pipelined version [6].

For the operation of a radix-2™ multiplication, the operands are split into groups
of m bits. Each of these groups can be seen as representing a digit in a radix-2".
Hence, the radix-2™ multiplier architecture follows the basic multiplication operation
of numbers represented in radix-2". The radix-2™ operation in 2’s complement
representation is given by Equation 10.

Z_y
RxY =R'xY' - R'yW_lyﬂ_l2W_m — Tyt ZijW""” (10
L

where R and Y are two operands W-bits wide; 7, _, is the most significant bit (is the
w-2

sign bit); and R = E . r2'.
i

This operation is illustrated in Fig. 1. For the W-m least significant bits of the
operands unsigned multiplication can be used. The partial product modules at the left
and bottom of the array need to be different to handle the sign of the operands.

For this architecture, three types of modules are needed, as shown in Fig. 2. Type
I are the unsigned modules. Type II modules handle the m-bit partial product of an
unsigned value with a 2’s complement value. Finally, Type IIl are modules that
operate on two signed values. Only one Type III module is required for any type of

multiplier, whereas 2% - 2 Type II modules and (% - 1) Type I modules are

needed. Fig. 6 shows an example of an 8-bit wide 2’s pipelined complement radix-4
array multiplier.
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decimal
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-1 3 1 2 1

TPATOD TO  (10)
x 2 1 3 2
TOOTTT T0  (98) 00 0
e — 0110 100
(ID[1111101100| ey + 1110 + 1101
1111100010 [fi1r1o1100] [1111100010]
(ID111101110100 A
A 1111110110 X
(IDH11111011010100
11110110
+ 10000010100 —_— 10

11110110 11110110
X 10 X 11

0100
10

sign
extension 0110
? 11

11110110
N 01

0000001111010100 ”11&00 006)?10
z“i z‘i me%ﬂ z“x%z“% z‘% zk%z"i -|0011810 | * ll ! P?ll |
0000010100 1111110110

0%0%0%76% |f+f+%+% = (980)

Fig. 1. Example of a 2’s complement 8-bit wide radix-4 multiplication

TYPE TYPE

TYPE
f TYPE II

Fig. 2. General structure for a 2’s complement radix-2m multiplier

We present a summarized example for W=8 bit wide operands using radix-4
(m=2) in Fig. 3.

A7..A0 B7B6 AT.A0 B5B4 AT.A0 B3B2 AT.A0 BIBO
| operand 2 | | operand 1 | | onerand 1 | | operand 1 |
m// 10 10

-

A
P15..P6 P5P4 P3P2 P1PO

Fig. 3. 8-bit wide 2’s complement Binary array multiplier m=2
Figure 4 and Figure 5 show the structure of operands 1 and 2, their inputs and

outputs and nearest connections between them and the blocks of adders. In additional
they show the sign extension that has been used in operands 1 and 2.
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ATA6 BIBO AS5A4 BIBO A3A2 BIBO AIA0 BIBO
rrrrrr 2 ‘7 2 A2 A2 A2 A2 2
! % * % *
operand 1 | Type IT Type I Type Type
i 2 ’—L 2 2 ‘Z ~2 2 ‘2
3 + 1 + 1 + 1 +
e e =
o
s 0pes®” | 2 Tz Tz 2 2
om |
,,,,,, sign extension \
- 1] \ |
+ : + 1 + | + 1 + iadders
TR R I [ R

P1P0
to another adders

Fig. 4. Operand 1 and connections to first line of adders showing the sign extension

ATA6 B7B6 ASA4 B7B6 A3A2 B7B6 AIA0 B7B6
T P O S PO S O L
‘ . ‘ ‘ ) ‘ ‘ ) ‘ ‘ )
i Type 111 Type 11 Type II Type 11 ; operand 2
| A 2 ‘2 ‘z ‘z ~2 ‘z ‘2 i
i ‘ B ’—|—1{ B }—I{ B H B ‘ i
! [
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, - %,
2 2 2 2 2

P15P14 P13P12 P11P10 P9P8 P7P6

Fig. 5. Operand 2 and connections to third line of adders showing the sign extension

4.1 Pipelined Array Multiplier

Glitches are unwanted switching activities that occur before a signal settles to its
intended value. Each clock edge changes the inputs to the combinatorial logic
between registers and every node has a different delay from different inputs, which
change their state several times before settling down. Glitches on a node are
dependent on the logic depth to that node, i.e. the number of logic gates from the
node to the primary inputs (or sequential elements). The deeper and wider the logic
behind a node, the more it glitches. These glitches can be reduced by reducing the
depth of logic levels

The regularity of this array architecture makes it suitable for the application of
other power reducing techniques. A pipelined version was constructed in order to
reduce the critical path and useless signal transitions that are propagated through the
array. The doted lines in Fig. 6 show the pipelined version of the radix-4 array
multiplier for 8-bit operands. As can be observed, the advantage of the layered
structure of the array was taken into account and two layers of registers were
introduced. Thus, 3 clock cycles are necessary to perform the computation
considering 8-bit architectures.
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Fig. 6. Example of an 8-bit wide 2°s complement radix-4 array multiplier

5 Modified Booth multiplier

The radix-4 Booth’s algorithm (also called Modified Booth) has been presented
in [5]. In this architecture it is possible to reduce the number of partial products by
encoding the two’s complement multiplier. In the circuit the control signals (0, +Y,
+2Y, -Y and -2Y) are generated from the multiplier operand Y for each 3-bit group,
as shown in the example of Fig. 7, for an 8-bit wide operation. A multiplexer
produces the partial product according to the encoded control signal.

Common to both architectures is that, at each step of the algorithm, two bits are
processed. However, the basic Booth cells are not simple adders as in the array
multiplier, but must perform addition-subtraction-no operation and controlled left-
shift of the bits of the multiplicand. Fig. 8, shows an example of an 8-bit modified
Booth architecture.

5.1 Pipelined Modified Booth Multiplier

A pipelined Modified Booth by introducing registers along the layers of the array
was implemented in and it is presented in Fig. 8. As it can be observed in this figure,
there are two layers of registers along the array as in the binary array multiplier with
m=2. Again, 3 clock cycles are required to compute the final result in the 8-bit
architecture and six cycles to the 16-bit one. Moreover, common to both
architectures is that the registers are inserted at the output of the adders which are
responsible for adding the partial product terms. However, in the Booth multiplier it
is also necessary to introduce registers in the output of the encoders to perform the
correct operation of each clock cycle as shown in Fig. 8.
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MD 10110111 (-73) 101101110 (2*MD)
MR 01011010(0)  (+90) 001001001 ( -MD)
o 010010010 ( -2*MD)

‘ llOO — 000000000 (PP)
010010010
101 _—
T~ 00010010010 (shift)

011 001001001

T~ 0000110110110 _(shify)

010 \ 101101110
111100010010110  (shift)
110110111
(-6570) 11110011001010110  (shift)
Fig. 7. Example of an 8-bit multiplication with Modified Booth algorithm
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Fig. 8. 8-bit pipelined modified Booth architecture

6 Design Methodology

33

Fig. 9 shows the design flow used in the physical implementation of the
multipliers. Two methodologies are presented: our methodology (black), and the
methodology used in [7] and [8] with the SIS environment (gray). The multipliers
were originally described in BLIF (Berkeley Logic Interchange Format). Thus, these

BLIF files are used as input of the design flow, as can be observed in Fig. 9.
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In [5] and [6], the performance of the multipliers was evaluated only in a logic
level. The SIS [17] tool was used to synthesize and estimate area and delay of the
multipliers while power consumption was estimated using the switch-level simulator

SLS [8].

| BLIF2VERILOG I | BLIF2SIM |
| PrimeTime (delay) | | TROPIC (area) I—Dl .cif file |
SLS VECTORS | extracted netlist file | | IC STATION |

GENERATOR &
SLS2SPICE

Fig. 9. Design tools for synthesis and performance estimation

In this work, the TROPIC tool was used for the physical synthesis of the
implemented multipliers. This tool uses a spice like format (sim) as input and
performs a library-free automatic layout generation of the circuit regarding the
design rules of the target technology. TROPIC gives the total area occupied by the
layout and the number of transistors of the synthesized circuits. Before the layout
synthesis of the circuits, it is necessary to set the size of the transistors and the
number of rows. This last parameter is useful to set the aspect ratio width/height.

Since the TROPIC tool generates the widely used cif format, the resulting circuit
layout can be visualized with Mentor Graphics IC Station tool. Fig. 10 shows the
layout for the 8-bit array multiplier, which was generated automatically by TROPIC
tool. Once the cif file is generated, an electrical extraction can be performed using
the TROPIC tool.

The extracted SPICE netlists were simulated using the ELDO electrical simulator
in order to obtain power estimation at the back-annotated electrical level. This
simulator is part of the Mentor Graphics environment for power estimation. The
same set of input vectors used in [4] and [5] for power estimation was converted
from SLS to SPICE format and then used for transient analysis.

The timing analysis tool PrimeTime [12] was used to estimate the critical delay
of the circuits. PrimeTime is able to perform both static and functional timing
analysis. Static timing analysis (STA) is the standard approach used for delay
estimation in the current designs complexity. The main issue of this approach is that
logic information about the cells of the circuit is not considered during the critical
delay search. At the same time that this issue makes the delay estimation faster, it
can make STA suffers from the false path syndrome. In order to avoid this false path
syndrome, the designer must report all timing exceptions of the circuit to the STA
tool, and it can be a very hard task.

Another way to avoid false paths during delay estimation is using functional
timing analysis (FTA). FTA performs the critical delay search taking into account
information about the logic cells of the circuit. So, paths that can not propagate a
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transition are not considered and the critical delay will be the delay of the longest
sensitizable path. Primetime uses the Exact Floating Mode sensitization criterion
during the critical path search. This sensitization criterion considers both logic and
timing information of the cells during the path sensitization.

=1 IC Station, v8.9 6.1

MGC e Context Ohjects §GR Jelect Connecivity Meuting Setsp Repert Oter View Owcting Transtate Packages CMbre My A0%
Comtet: meltbial(GE £ 0) Process: am12(-R) Corver: 15000 10500 Layer COMMNT g

A>Lh0OXFa~0 0

- =~

Fig. 10. Layout of an 8-bit array multiplier generated automatically by TROPIC

7 Performance Comparisons

In this section, we present area, delay and power results for the 16-bit multipliers
after layout generation. The circuits were implemented using HCMOS 0.25um
technology and the same transistor size (WP=5um and WN=3um). Area results were
obtained using the TROPIC layout generation tool and are presented both in terms of
total area and in terms of number of transistors. Power consumption was estimated
through electrical simulation using ELDO simulator and applying a random pattern
signal with 100 input vectors. Power results are presented in terms of average power
consumption. PrimeTime was used to perform static and functional timing analysis
and both delay results are presented. We have not applied yet any transistor-level
techniques which can further improve the efficiency of booth architectures.

7.1 Pipelined and Non-Pipelined Results

Table 1 presents area results for 16-bit radix-4 Booth and the new array
multiplier proposed in [6], both implemented in layout level.



36 Leonardo L. de Oliveira et al.

Table 1. Area results for 16-bit parallel multipliers

Parameter Array Booth Diff(%)
L Number of transistors 12484 10064 -19.4
non-pipelined
Total area (mm?) 0.2872 0.2172 -24.4
L Number of transistors 23014 21220 7.8
pipelined 2
Total area (mm") 0.4829 0.4608 -4.6

As it can be observed in Table 1, the array multiplier presents the highest area
and number of transistors. This occurs due to the fact that the partial product lines
operate on group of m bits and the basic multiplier elements, which compose the
modules for the product terms, are slightly more complex. The introduction of
registers along the layers of the arrays increases the area of both architectures when
compared to the non-pipelined architectures as shown in Table 1. Although the array
multiplier presents the highest area value, this architecture can be slightly more
efficient in terms of delay result as presented in Table 2. This is due to the lower
logic depth presented by our proposed architecture.

Table 2. Delay results for 16-bit parallel multipliers

Array Booth Diff (%)
L FTA 9.80ns 10.59ns +8.06
pipelined
STA 9.86ns 10.61ns +7.60
o FTA 17.75ns 18.97ns +6.87
non- pipelined
STA 18.26ns 19.59ns +7.28

Fig. 1 and Fig. 8 show that while in the pipelined array multiplier the critical path
is given by a m=2 multiplier module and 2 full adders, in the pipelined Modified
Booth, the critical path includes the encoder, an operand circuit composed by a
multiplexer and a full adder. These circuits produce a large number of
interconnections and a longer delay per row. Thus, the array multiplier presents less
delay values than the Modified Booth even in the pipelined version as shown in
Table 2.

As observed in [1], the major sources of power dissipation in multipliers are
spurious transitions and logic races that flow through the circuit. Thus, the
significantly less amount of spurious transitions in the new array multiplier justifies
the gain in power when compared against the Booth multiplier as shown in Table 3.
Moreover, the new array multiplier presents less logic depth due to the more
balanced paths to the basic blocks that compose the array architecture. This
contributes for improvement in power reduction because of the less generation of
useless transitions. Our architecture is more efficient in reducing glitching and hence
reducing power, as the results in Table 3 demonstrate. It is also apparent that our 6-
stage pipelining for the 16-bit multiplier is not optimum, as the power increase
demonstrates for the pipelined version of both multiplier architectures. It is also
apparent that our architecture is more power efficient for a smaller number of
pipeline stages, when compared to the Modified Booth. All power results are for the
same pipeline frequency (50MHz).
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This occurs because in the pipelined approach glitching is reduced significantly.
This reduction will have a greater impact in the case where the glitching was higher.
However, the reduced logic depth and delay presented by our architecture still makes
it significantly more efficient, as shown in Table 3.

Table 3. Power dissipation for 16-bit parallel multipliers at Vdd=2.5V and freq=50MHz

Array (mW) Booth (mW) Diff (%)
pipelined 14.76 17.12 +16.0
non-pipelined 10.76 16.75 +55.7

7.2 Comparison between Electrical and Logic Results

Table 4 shows area, delay and power percentage changes between the pipelined
and non-pipelined array and Modified Booth multipliers. The estimates at the logic
level and after layout correlate well for power. Area estimates at the logic level is
just the number of literals coming from logic synthesis (SIS environment). Delay at
the logic level was also estimated in SIS environment by using mcnc library. The
relative power estimations are fairly close as shown in Table 4. In the logic level
power results were obtained by using a random pattern input signal with 10,000
input vectors. The larger number of glitches generated in the Modified Booth makes
this architecture more power consuming in both pipelined and non-pipelined version,
which is captured with the SLS simulator. This validates the results reported in [5]
and [6] at gate level design.

Table 4. Comparison between parallel multipliers in electrical and logic simulations

pipelined non-pipelined
Parameter Logic Level | Electrical Level | Logic Level | Electrical Level
Area (n. of transistors) -14.4% -7.8% -20.2% -19.4%
Delay (ns) +15.2% +8.06% +1.1% +6.87%
Power (mW) +18.7% +16.0% +54.0% +55.7%

8 Conclusions

We have described the layout implementation of a new array multiplier and
Modified Booth multiplier both in pipelined and non-pipelined versions operating in
2’s complement numbers using radix-2™ encoding. We have presented results that
show significant improvement in power consumption in the new pipelined and non-
pipelined array multiplier. We have compared the new array and Modified Booth
multipliers simulated both at the logic and electrical levels. The results showed that
the relative values at the two levels of abstraction are similar when we compare the
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power consumption of the multipliers. As future work we hope to be able to
prototype these architectures in order to experimentally validate these results.
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Abstract. Dynamic reconfiguration is a promising approach for re-
source efficient utilization of microelectronic systems. Standard plat-
forms for partial dynamic reconfiguration are field-programmable gate
arrays (FPGAs). Multiple hardware tasks can share the same FPGA re-
sources over time, which increases the device utilization in comparison to
non-reconfigurable systems. Although, similar resource management is
already known in the area of operating systems, there is a requirement
to adapt these concepts to the special needs of dynamically reconfig-
urable systems. Additionally, there is a lack of underlying mechanisms,
e.g., to suspend hardware tasks and restart them at a different position
within the FPGA. In this article we introduce a mechanism for task
relocation that includes saving and restoring of state information of the
task. Based on this approach we address the problem of defragmen-
tation. We present defragmentation algorithms that minimize different
types of costs. With the help of a detailed simulation model and a
benchmark, we finally provide realistic simulation results and compare
the different algorithms.

1 Introduction

Field Programmable Gate Arrays (FPGAs) are reconfigurable architectures
that enable the integration of complete systems on a single chip. Currently
available FPGAs have the feature of partial reconfiguration, which offers a high
flexibility. Arbitrary functions in form of a hardware task can be configured
on demand and can be removed after execution at run-time thus allowing the
sharing of FPGA hardware resources over time. With the increasing amount of
hardware resources, dynamically exchanging hardware tasks require a resource
management and methods for placement and relocation of the tasks. While sev-
eral approaches address the problem of placing tasks on partial reconfigurable
FPGAs [1, 10], there is a lack of underlying mechanisms, e.g., to suspend hard-
ware tasks and restart them at another time or relocate them to another area of
the FPGA. In this paper we describe an approach to an efficient task relocation

Koester, M., Kalte, H., Porrmann, M., Riickert, U., 2007, in IFIP International Federation for Information
Processing, Volume 240, VLSI-SoC: From Systems to Silicon, eds. Reis, R., Osseiran, A., Pfleiderer, H-J.,
(Boston: Springer), pp. 41-53.
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at run-time. The necessary relocation mechanisms are mainly implemented in
hardware allowing to save and restore state information while relocating the
hardware task.

Recurrent allocation and de-allocation of various sized tasks cause the free
FPGA resources to split into small fragments over time. But for placing a hard-
ware task the FPGA resources need to be available contiguously in a single
block. In order to increase the utilization of the FPGA, tasks can be rearranged
at run-time by using the relocation mechanisms with the aim to cluster free re-
sources to larger blocks, thus enabling placement of larger hardware tasks. This
process is called defragmentation. In this paper we present defragmentation
algorithms with the objective to minimize different reconfiguration costs. The
defragmentation algorithms have been implemented in our simulation frame-
work SARA. Simulation results show that the defragmentation algorithm we
present here can be useful to increase the utilization of the FPGA.

2 Task Relocation

The basic requirement for all kinds of task reorganizations (including defrag-
mentation) on the FPGA fabric is a proper mechanism to stop and relocate a
running task. In almost all cases this means that not only the hardware struc-
tures of the task have to be relocated, but also the current state information
that are stored in registers and memory. In order to relocate a task, the current
state information have to be read, the new instance of the task has to be placed,
the state information have to be restored, and finally the old instance of the
task has to be erased. There are basically two approaches to read and restore
state information that are stored in registers and memory all over the FPGA
area of the task.

The Task Specific Access Structures approach realizes reading and restoring
by adding an extra read /write interface to all state registers which leads to extra
resource consumption and especially to extra design effort. Consequently, each
hardware task has to be redesigned to be used in a reconfigurable environment.
However, one advantage of this approach is the high data efficiency, as only
the raw state information are read. In [9] Ullmann et al. have presented an
implementation of this approach.

In contrast to that, the Configuration Port Access approach is based on the
bitstream readback facilities of the configuration port (in our case the Xilinx Se-
lectMAP /ICAP interface, see [11]) of the FPGA. This port offers the possibility
to read arbitrary columns of the configuration memory including the current
register values and the RAM contents. After or during reading the bitstream,
the state information have to be filtered out of the readback stream. Before con-
figuring the new instance the preset bits of the flip flops and the RAM content
are modified according to the previously extracted state information (see [8]).
As the Configuration Port Access approach uses the inherent access structures
of the configuration circuitry and the configuration port, no hardware struc-
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tures have to be added to the tasks itself. However, one disadvantage of this
approach is the low efficiency, as the portion of state information in the read
data can be less than 1%.

2.1 Our Relocation Approach

We have developed a relocation approach that is based on the Configuration
Port approach. As simply all register values are stored there is no need to know
anything about the internal structure or behavior of the task and no extra
design effort has to be spent. In contrast to existing implementations that are
based on the Configuration Port Access approach (e.g., by Simmler et al. in [8]),
our approach does not read all configuration data, but only those that include
state information and belong to the task to be suspended. Furthermore, the
actual state information extraction is not done after but during reading the
configuration data. These differences to other approaches significantly reduce
the amount of data to be read back, the data to be stored, and finally the
processing time.

Platform Information

The mechanism of task relocation basically depends on the underlying FPGA
architecture and on the degree of freedom during the task placement (2D-,
1D-placement or fixed task slots). We use the Xilinx Virtex FPGAs because
these are the only devices which combine system level complexity and partial
reconfiguration (in a column-wise manner). The internal configuration memory
of a Virtex FPGA stores the bitstream and can be visualized as a rectangular
array of bits. The bits are grouped into one bit wide vertical columns that extend
from the top of the device to the bottom. These so called frames are the atomic
unit of configuration and are addressed by the major address (MJA) and the
minor address (MNA). A detailed description can be found in [11]. The column-
wise reconfigurability of the Virtex FPGAs also inspired our reconfigurable
system approach [7]. All hardware tasks can be dynamically placed, relocated
and erased along a horizontal communication infrastructure (1D-placement).
The communication infrastructure is completely homogeneous, which makes
it possible to dynamically relocate hardware tasks along the horizontal bus
structure. This relocation process can be realized by bitstream manipulations
that change the column addresses (MJA) of individual hardware tasks during
the download process of the configuration bitstream (see Fig. 1, [7] and [5] for
further information).

Architecture Overview

The architecture of our context relocation approach can be seen in Figure 1.
There are four main function blocks and a database to perform a relocation
process. The main blocks are the Configuration Manager, the State Extrac-
tion Filter, the State Inclusion Filter and the REPLICA Filter. The first step
of a context relocation process is to stop the clock of the particular hardware
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task or of all hardware tasks to prevent state changes during the read process
(e.g., by clock gating). Subsequently, the Configuration Manager initiates the
Select MAP interface to read all frames that contain state information. The ad-
dresses of the frames are calculated on basis of the location information given
by a database entry of the task. The database stores the current location of each
task, the memory addresses of the partial bitstreams and finally the location of
all state registers. During the read process, all frames are continuously trans-
ferred to the State Extraction Filter, which determines the state value within
each frame. The task is now suspended, but not deallocated. That means, a
partial "empty” bitstream has to be downloaded to completely erase the cir-
cuitry of the task. The restoring process starts with the State Inclusion Filter,
which inserts the register values of the database into the original partial bit-
stream of the hardware task. The resulting bitstream would still allocate the
task at its original location, but with the new initial register states. Therefore,
the REPLICA Filter relocates the hardware task from its original location to
the FPGA column that is determined by the New Column Location input. Fi-
nally, the new partial bitstream, which is relocated and includes the states, is
downloaded by the Configuration Manager. After resetting the hardware task,
all registers are set to the proper value and the task can start processing in
exactly the state it was interrupted before. In the following, the four blocks are
described in more details.

The Configuration Manager is connected to the SelectMAP configuration
interface to read and write configuration data. When writing a bitstream the
Configuration Manager reads 32-bit bitstream words from arbitrary memory
locations and converts them to 4 x 8-bit bitstream words, which are passed to
the configuration interface. For performance reasons, this part is implemented
in hardware (see [5] for further details). When reading the state information, the
Configuration Manager selects only the frames that contain state information.
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Therefore, the Configuration Manager takes the column (Col), slice (Slice) and
flip flop (F'F') values of the database entries for each state bit and generates an
address of the frame that contains the current state value. The frame address
consists mainly of the major address (MJA) and the minor address (MNA).
Equation(1) and (2) show the necessary calculations (Chip_Cols determines the
maximum CLB column number of the FPGA).

MJA = Chip_Cols — Col -2+ 2 (1)
(left chip half and Virtex only)

MNA = Slice - (12- FF —43) — 6 - FF + 45
with Slice, FF € {0,1} (2)

= MNA € {2,8,39,45}

The MNA can have only four different values, which means all flip flop
states of one CLB column are stored in only 4 frames. This results in a heavy
reduction of the amount of data to be read, as a complete CLB column consist
of 48 frames. Consequently, it makes sense to implement tasks in as few CLB
columns as possible to ensure a reasonable amount of state information in each
frame that is read. The output of the Configuration Manager is finally a stream
of single frames that contain the state information of the hardware task.

The State Extraction Filter takes the readback stream of the Configuration
Manager, extracts the state values and updates the database entries. For ex-
tracting the state value, the filter determines the bit index within the readback
frames by using the following equation (see also [11]).

Bitidx = (18 - row) + 1 (3)

As a result, the bit index only depends on the CLB row of the appropriate flip
flop, which means that all flips flop values of the same column and the same
type (e.g. Slice=0, FF=1) are located within one frame.

The State Inclusion Filter performs the first step of the restoring process.
The filter takes the original partial bitstream of the hardware task and inserts
all database state values by manipulating the preset bit of the registers. Similar
to the state extraction process, the frame address and bit index of all state bits
have to be calculated. The computation of the MJA and the bit index are the
same as for the state extraction process (cf. (1) and (3)); solely the MNA values
are different. See [8] for further information.

The REPLICA Filter is capable of relocating tasks by manipulating the
partial bitstream of the task. Downloading the output stream of the State In-
clusion Filter would allocate the task at its original location (after initial place
and route). However, in most cases a new location has to be found according to
the current resource allocation. In order to perform the proper manipulations,
the REPLICA filter parses the bitstream and replaces the column addresses
(MJAs) within the bitstream. The relocation process can only be performed
horizontally. The necessary manipulation, including the update of the CRC
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(Cyclic Redundancy Check) values within the bitstream, is implemented in
hardware and does not cause any extra time overhead. The architecture and
the hardware implementation of the REPLICA filter as well as an example
application are published in [5].

2.2 Relocation Time Overhead

A key performance issue in a reconfigurable system approach is the time over-
head to place or relocate a hardware task. The relocation time in our hardware
implemented relocation approach consists of three times: the state capture time,
the de-allocation time, and finally the allocation time. The bitstream manipu-
lation processes of state inclusion and task relocation are assumed to be com-
pletely hidden in the task allocation time, which has already been shown for
the task relocation with the REPLICA filter in [5].

The total time for relocating a task depends on the number of utilized
CLB columns N5, the frame size Npyie/Frame, and the Select MAP frequency
fsetectmap- For each CLB column, which is to be relocated, 4 frames have to
be read for capturing the states of the flip-flops (see Eq. (2)). The first frame
of every new read access is always a pad frame, which does not contain any
significant data. Hence, in order to capture all states of a CLB column 2-4 = 8
frames have to be read and the total time for capturing the states of the flip
flops is:

8- Neois - NByte/Frame

Tcap = (4)

fSelectMap

For the allocation of a task 48 frames per task column must be written (see [11]
for further details) and the allocation time of a task is:

48 - Neois - NByte/Frame

(5)

lloc =
e fSelectMap
If the time for allocating and de-allocating a task is assumed to be the same
(Tiet = Talioc), the time for a complete task relocation can be approximated
by:

104 - Neois - NByte/FTame

Treloc ~ Tcap + Talloc + Tdel =

fSelectMap (6)
Equation (6) assumes a de-allocation process for every task relocation, but as
described in Section 3, the de-allocation can be avoided if it is ensured that the
task area is overwritten anyway (e.g. during a defragmentation process).

In order to give an overview of realistic relocation times we have imple-
mented several designs on an XCV2000E device (see [6] for further details).
The frame length of this device is 196 bytes and the Select MAP frequency is
50 MHz. The task size ranges from 1 (8-bit divider) to 36 (RISC-CPU) CLB
columns (30% of the device) and the overall relocation time ranges from 0.4 ms
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(1 CLB column) to 14.8 ms (36 CLB columns). For each task the time for cap-
turing the states is only 8.2% of the complete relocation time. This is because
the de-allocation and allocation time outweighs the state capturing process.

In the following section various run-time defragmentation algorithms are
discussed, that consider the underlying mechanisms and timing models as de-
scribed in this section. By using the approximation of the relocation times,
simulations of a run-time defragmentation can be performed under realistic
timing constraints.

3 Defragmentation Algorithms

In dynamic reconfigurable systems recurrent allocations and de-allocations of
various sized tasks cause a so called external fragmentation, i.e., the contigu-
ous regions of unused reconfigurable cells gradually become scattered in small
fragments all over the FPGA. An important criteria for the placement of a re-
quested hardware task is the largest contiguous region of unused reconfigurable
cells. Any hardware task larger than that region cannot be placed. A solution to
increase the size of the region is to apply run-time defragmentation, i.e., to re-
locate currently configured hardware tasks aiming to cluster the unused cells in
one contiguous region. In [3] Diessel et al. described the one-dimensional order-
preserving compaction used for defragmentation in 2D system approaches. The
idea of one-way one-dimensional order-preserving compaction is sliding the al-
located hardware tasks to be compacted in a single direction along a single
dimension while preserving their relative order. The concept of this algorithm
can be adapted to the 1D system approach described in [7] since hardware tasks
are inherently placed in a single dimension. Algorithm 1 is showing the principle
of one-way one-dimensional order-preserving compaction. Consider a set of al-
located hardware tasks M = {m1, ma,...}. In the one-dimensional approach the
position z(m) of a hardware task m € M can be fully described by the leftmost
cell column of the task. The width w(m) of a hardware task can be described
by the number of cell columns that are used by the task. The defragmentation
according to Algorithm 1 is performed within the so called defragmentation
area from column isqre to column iend. Maefrag is the set of hardware tasks
which are located within the defragmentation area (line 1). i, is the currently
selected column for the placement of the tasks and is initialized by the value
iend (line 2). Inside the loop (lines 3-8) the task m is selected, which is located
rightmost within the defragmentation area (line 4). The selected hardware task
m is relocated by sliding it rightmost within the defragmentation area (lines
5-6). After relocation, the hardware task m is removed from the set Mgefrag
(line 7) and the loop is repeated until all tasks are compacted at the right. As
a result of the defragmentation, a single region with unused reconfigurable cells
is located starting from position igzq¢-

Although applying the defragmentation to the whole FPGA will result in
an optimal situation with no fragmentation, where all unused cells are located
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Fig. 2. Example for a locally defragmentation using the 1D system approach.

in a single block, probably all hardware tasks need to be relocated, which will
cause a large reconfiguration overhead.

The defragmentation time is derived by the sum of the relocation times of
the hardware tasks that are located within the defragmentation area. According
to Section 2.2 the relocation time of a hardware task basically depends on the
Select MAP frequency and the task size (number of cell columns). While the
SelectMAP frequency is given by the hardware architecture, the only parameter
that influences the time for defragmentation is the number of cell columns
to be relocated. In order to avoid a long defragmentation time with a large
reconfiguration overhead, it is therefore necessary to keep the number of cell
columns to be relocated as low as possible.

Whenever a requested hardware task cannot be placed due to fragmentation,
sometimes only a few tasks need to be relocated to allow a placement. Hence,
to reduce the reconfiguration overhead, the defragmentation can be performed
only locally by selecting a suitable defragmentation area. The selection of the
defragmentation area can be influenced by the following objectives:

Task Movements: If a requested hardware task m cannot be placed due to
fragmentation, one objective for the defragmentation can be to minimize the
number of hardware task movements. For this, we need to define the availability
vector:

(7)

b(i) = 0 if cell column ¢ is used
"=\ 1if cell column 4 is unused

Consider w(m) is the width of the requested hardware task m, then the bounds
of the defragmentation area can be found by solving the following optimization
problem:

lend
Minimize |Mefraq| sSubject to Z b(n) = w(m).

N=lstart

Column Movements: Minimizing the hardware task movements as described
above does not necessarily lead to the least reconfiguration overhead, since the
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Input Set of allocated hardware tasks M = {m1,ma2, ...}, position of the tasks x(m)
(origin:left), width of a task w(m), boundaries of the defragmentation area isiart
and ienq under the condition b(iend) = 1 and b(istart) = 1.

Output New positions Z(m) of the tasks within the defragmentation area.

1) Macfrag — {m|m e M A istart < x(m) A z(m)+w(m) < iena}
2) leur < lend

3) while Mdefrag 75 {}

4) select an m € Mgcfrag With maximum z(m)

5) teur < leur — w(m)

6) T(m)<— deur +1

7) Mdef'rag — Mdefrag \m

8) end while

Py

Algorithm 1: 1D defragmentation.

hardware tasks in Mgefrqg can be large and therefore cause a long reconfigu-
ration time. Another approach is to consider the required column movements
rather than the required hardware task movements. In this case, the bounds of
the defragmentation area can be found by solving a similar optimization prob-
lem:

lend
Minimize iepg — tstart Subject to Z b(n) = w(m).

N=1start

Cost: Apart from configuration aspects such as column or hardware task move-
ments mentioned above, the bounds of the defragmentation area can be derived
with respect to parameters like, e.g., priorities of the allocated hardware tasks,
or the expected remaining time of the allocated hardware tasks.

Let us assume the function p(m) € [0, 1] describes the priority of the hard-
ware task m. If p(m) = 0 the hardware task m has the least priority and
if p(m) = 1 the hardware task m has the highest priority. In order to find
a defragmentation area with a low overall priority, the following optimization
problem must be solved:

lend

Minimize Z p(m) subject to Z b(n) = w(m).

MmEMaefrag N=lstart

Regardless of the chosen objective — by solving one of the described optimiza-
tion problems and moving all allocated hardware tasks within column ,+ and
column 4,4 to the right as described by Algorithm 1, the requested hardware
task m can be placed at column %gszq.t.

An example of the defragmentation is shown in Figure 2. Consider a re-
quested hardware task m with the width w(m) = 4 and the reconfigurable
architecture is in a configuration as shown in Figure 2(a). In the current con-
figuration the placement of m is not possible although enough free configurable



50 Markus Koester et al.

cells are available. Applying the defragmentation with respect to minimal col-
umn movements results in a defragmentation area as shown in Figure 2(b) with
Istart = 7 and depq = 12. After defragmentation the allocated hardware task
within the defragmentation area is located rightmost, such that an unused re-
gion for placing the requested hardware task m is located at position issqre = 7
as shown in Figure 2(c).

4 Simulation Results

The defragmentation algorithms specified in Section 3 have been implemented in
the Simulation Framework for Analyzing Reconfigurable Architectures (SARA).
SARA is a discrete event simulator introduced in [4], which enables a realistic
simulation of system approaches for partially reconfigurable architectures.

The allocation of a hardware task is performed under real world conditions,
i.e., the configuration is done by simulating a Select MAP interface at a clock
frequency of 50 M Hz. Only a single hardware task can be configured or re-
moved at a time. The hardware tasks used in the simulations are considered
to be implemented on an XCV2000E FPGA and are based on the synthesis
results mentioned in [6]. The hardware task size ranges from 1 CLB column (8-
bit divider) to 36 CLB columns (RISC-CPU). Each simulation has a length of
4 sec, while within this 4 sec randomly 200 hardware tasks are requested to be
placed on the FPGA. Hardware tasks that cannot be placed due to unavailable
FPGA resources will not be placed again later. Defragmentation is initiated,
whenever a hardware task cannot be placed due to unavailable contiguous un-
used CLBs, although the total number of unused CLBs is larger than the size of
the requested hardware task. The online placement of a hardware task is done
by the Best-Fit algorithm [2]. It is possible to use arbitrary execution times
for the hardware tasks. However, for the discussed simulations we decided that
the execution times of the hardware tasks linearly depend on the size of the
hardware task (e.g. 8-bit divider: 4 ms, RISC-CPU: 115 ms). After execution
the hardware tasks are removed from the FPGA as soon as the configuration
device is available. In this work we consider defragmentation to be performed
as follows:

The relocation is realized as described in Section 2.1. At the beginning the
clocks of the hardware tasks that are located within the defragmentation area
(Mgefrag in Alg. 1) are stopped. Subsequently, the state information of the
hardware tasks are captured and stored by the configuration device. Then the
hardware tasks are relocated to the new positions, which are calculated by the
defragmentation algorithm presented in Section 3. During relocation the pre-
viously captured states are restored, so that no extra time for the state write-
back is necessary. After all hardware tasks are located at their new positions
the requested hardware task is placed. Finally, previously used CLB columns,
which still contain old configuration data, are erased by a corresponding empty
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Table 1. Device utilization and rejected hardware tasks of the simulations.

Device Utilization (mean) Rejected Modules (mean)
CLKconl No |Complete| Local No |Complete| Local
[MHz] || Defrag. | Defrag. | Defrag. | Defrag. | Defrag. | Defrag.
10| 24,88%| 30,78%| 26,89%| 34,16%| 36,01%| 34,72%
25 32,63%| 37,14%| 35,95%| 18,08%| 19,40%| 17,45%
50[ 34,25%| 36,91%| 37,08%| 14,45%| 13,54%| 12,03%
100/ 34,91%| 38,27%| 38,25%| 13,50% 8,70% 8,70%
(no)|[ 37,85%| 38,64%| 38,64%) 9,09% 7,25% 7,25%

bitstream. Now that the defragmentation is done, the clocks of the relocated
hardware tasks are started again.

We consider two different defragmentation algorithms. In the first defrag-
mentation algorithm a complete defragmentation is performed by considering
the whole FPGA area as the defragmentation area. The second defragmenta-
tion algorithm selects the defragmentation area with the objective of minimal
column movements to allow a placement of the requested hardware task. There-
fore, only a local defragmentation is performed.

The simulations have been performed with complete defragmentation, local
defragmentation and without defragmentation. For a comparison we considered
the metrics device utilization and rejected hardware tasks. The device utiliza-
tion v = NegeccrBs/NorLps is the number of CLBs of the currently executing
hardware tasks (Negecorps) compared to the total number of CLBs (N¢rps).
In the simulations we used a XCV2000E which has Ngpps = 80 - 120 = 9600.
The metric rejected hardware tasks p = Nyeject/Nhardwaretasks 18 the number of
unplaceable hardware tasks (Nyeject) divided by the total number of hardware
tasks in the simulation (Npardwaretasks)-

In the simulations we have varied the configuration device clock frequency in
order to change the ratio of the configuration times to the execution times of the
hardware tasks. The simulation results are shown in Table 1. At a configuration
clock speed of 10 M H z defragmentation has a negative effect on the percentage
of rejected hardware tasks. In all simulations approximately every third hard-
ware task cannot be placed. However, the simulation with no defragmentation
has the least number of rejected hardware tasks.

At a faster configuration clock speed of 25 M H z the local defragmentation
has the least number of rejected hardware tasks, while the complete defrag-
mentation results in the largest number of rejected hardware tasks. In this
simulation local defragmentation showed an improvement of the number of re-
jected hardware tasks compared to no defragmentation. At a configuration clock
speed of 100 M Hz both defragmentation algorithms produced nearly the same
simulation results. Although the selected XCV2000E device does not support
that configuration clock speed, we intended to analyze the influence of short
configuration times compared to relatively long execution times of the hard-
ware tasks. In this simulation there is the largest improvement of the number
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of rejected hardware tasks compared to no defragmentation. By assuming that
no configuration time is needed and tasks can be configured in 0 sec still 9,05%
of the tasks cannot be placed and with defragmentation still 7,25% of the tasks
are rejected.

In most of the simulations the complete defragmentation leads to the largest
device utilization. One reason for this is that hardware tasks are suspended
longer due to the higher reconfiguration overhead of complete defragmenta-
tion. Therefore, they remain longer on the FPGA and cause a higher device
utilization. But this does not result in fewer hardware task rejections.

5 Conclusion

In this paper we have described our approach to run-time relocation. Hard-
ware tasks can be placed along a one-dimensional communication structure by
manipulating the partial bitstream during configuration of the hardware task.
When relocating a hardware task the internal state information is preserved
by a state extraction and state inclusion filter. To save the internal states no
extra hardware structure have to be added to a hardware task and there is no
need to have detailed knowledge about the internal structure or behavior of the
hardware task.

By using our hardware task relocation and context saving methods, run-time
defragmentation can be realized. We have described a defragmentation method
with the objective to minimize the reconfiguration time overhead. We have im-
plemented the defragmentation method in a simulation framework. Simulation
results have shown: If the configuration time of a task equals the execution time
of the task defragmentation is not beneficial. If the execution time of a task is
greater than the configuration time of the task, local defragmentation becomes
useful. In any simulation local defragmentation performed better compared to
complete defragmentation.
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Abstract. Quasi delay insensitive circuits are functionally independent of
delays in gates and wires (except for some particular wires). Such
asynchronous circuits offer high robustness but do not perform well to
automatically synthesize and optimize. This paper presents a new
methodology to model and synthesize data path QDI circuits. The model used
to represent circuits is based on Multi-valued Decision Diagrams and allows
obtaining QDI circuits with two-input gates. Optimization is achieved by
applying a technology mapping algorithm with a library of asynchronous
standard cells called TAL. This work is a part of the back-end of our synthesis
flow from high level language. Throughout the paper, a digit-slice radix 4
ALU is used as an example to illustrate the methodology and show the results.

1 Introduction

Asynchronous circuits do not have a global signal to synchronize them.
Synchronization between blocks is locally done. Those circuits show very interesting
properties such as low power consumption, noise emission, security, robustness,
reusability, etc [1].

Today, to adopt the asynchronous technology the industry needs powerful
asynchronous tools similar to synchronous ones.

This work is part of the TAST [2, 3] (Tima Asynchronous Synthesis Tool)
project, aimed at developing and prototyping such tools. The synthesized circuits in
TAST are quasi-delay insensitive (or QDI [4]). QDI circuits are functionally correct
independently of delays in gates and wires, apart from the assumption that some
forks are isochronic. This kind of asynchronous circuit is particularly robust. But
robustness has a cost; these circuits usually have more transistors than the others,
especially when standard cells are targeted. Many efforts are directed towards circuit
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optimization and transistor reduction; one of the main difficulties is to preserve the
property of quasi-delay insensitivity [5-9].

2 Contributions

This paper presents a complete standard cells based design flow we have developed
as illustrated in Fig. 1. Our method uses Multi-valued Decision Diagrams as a model
of the circuit that can be optimized while preserving the QDI property. Firstly, the
model is generated from a CHP description. Secondly, the model is optimized. A
two-input gates circuit is synthesized from the model. Thirdly, a technology mapping
algorithm produces the final circuit, using gates from a library of standard
asynchronous cells called TAL (TIMA Asynchronous Library).

Two-input
gates netlist

I
Techriology
Mapplng

Mapped
Netlist

Results

Fig. 1. Asynchronous Design Flow

This design flow includes a general technology mapping algorithm dedicated to
QDI circuits. It enables to target any standard cells library, including or not
asynchronous cells. The main objective of this work is to reduce the area of the
asynchronous circuits. In fact, this is one of the main challenges for the
asynchronous circuits to be adopted. Accordingly, the last part of the paper compares
results obtained for our asynchronous circuits to its synchronous equivalent.

3 Asynchronous Circuits

3.1 Communication channels and handshake protocol

In asynchronous circuits, a local mechanism is used to perform the synchronization
called handshake protocol. It relies on two signals: request and acknowledgment.
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When a block needs to transmit data to another, it sends a request signal along with
the data, and holds them until it receives the acknowledgment. The request and
acknowledgment signals may not be reset before the next communication, making
two possible handshake protocols, well-known as two-phase and four-phase
protocols. Asynchronous circuits considered in TAST implement the latter. Request,
acknowledgment and data are linked together; therefore we consider them as a single
entity called communication channel.

3.2 Quasi Delay Insensitivity

A circuit is said QDI (Quasi Delay Insensitive) when its correct operation does not
depend on the delays of gates or wires, except for certain wires that form isochronic
forks [10]. If a circuit is QDI, a transition on its input must cause a transition on its
output. It is said that the transition on the output acknowledges the transition on the
input. Mutual exclusion plays a very important role to prove this causality
relationship [11].

3.3 Delay Insensitive Code

In QDI circuits, a mechanism must guarantee that when a channel emits a request, its
data are available. To achieve this, the request is encoded with the data using a 1-of-
n code: n rails are used to implement n possible values, numbered 0 to n-1. When all
the rails are ‘0, there is no data and the request is ‘0’. The channel is said invalid.
When one of the rails is ‘1°, its number is the value of the data, and the request is ‘1°.
The channel is said valid. Other codes, when several rails are ‘1°, are out of the code,
and therefore forbidden. The code is said Delay Insensitive since it guarantees that
the request signal is always synchronized with the data.

3.4 The Muller gate

Asynchronous circuits need a gate that synchronizes several signals. This gate is
called Muller gate (or C-element): when all inputs are equal, the output takes their
value; when inputs are different, the output holds its value. Its symbol is a circle.

3.5 An example

Throughout this article, we illustrate our method with the example presented in Fig.
2. This example is a digit-slice radix 4 ALU: it computes the function Op between its
operands A and B, using the carry Cin and Cout when needed (addition and
subtraction). Radix 4 was chosen to demonstrate that the method is not limited to
dual rail. The ALU can compute seven different operations (add, sub, and, or, xor,
neg, not); therefore Op is encoded with a 1-of-7 code.
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Fig. 2. A digit-slice radix 4 ALU.

The CHP code is given in Fig. 3.
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process alu_digit_slice
port( op:indi MR[7], a: in di MR[4],

b: in di MR[4], cin: in di MR[2],

s: out di MR[4],cout: out di MR[2];)
begin
variable op: MR[7],a: MR[4],b: MR[4],c: MR[2];
!

Op?op;
@[
op ='0'=> A?a, B?b; --add
@[ a+b<3=> Coutl0, [Cin?c; Slatb+c]; -K

a+b=3 => Cin?c; [Coutlc, S!(c=073:0)]; --P
a+b>3 => Cout!1, [Cin?c; Sl(a+b+c-4)]; -G

op ='1"=>A?a, B?b; --sub

@[ b-a<3=> Coutl0, [Cin?c; Slb-a+c]; -K
b-a=3 => Cin?c; [Coutlc,S!(c=073:0)]; -P
b-a>3 => Cout!1, [Cin?c; S!(b-a+c-4)], --G

op ='2'=>A%?a,B?b;Slaandb; --and

op ='3'=> A%a, B?b; Sla or b; --or

op ='4'=> A?a, B?b; Sla xor b;--xor

op ='56'=> A%a; Sl(nota+1); --neg

op ='6'=> A?a; Sl(not a); --not

end

Fig. 3. CHP code of the example.

4 Circuit modeling using MDDs

The first step of our method is to model the circuit with Multi-valued Decision

Diagrams (MDDs). It is presented in this section.
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A MDD [12] is a generalized BDD (Binary Decision Diagram, [13]) structure.
This structure is very interesting for QDI circuits synthesis because it exhibits the
notion of mutual exclusion, which plays a valuable role in quasi delay insensitivity.

4.1 Presentation of the Multi-valued Decision Diagrams

A MDD is a rooted directed acyclic graph. Each non-terminal vertex is labeled by a
multi-valued variable and has one out-going arc for each possible value of the
variable. Each terminal vertex is labeled by a value. Fig. 4 presents an example of
MDD.

Each path of the MDD from its root to a terminal vertex maps to an input vector
(a state of the input variables). The value of the terminal vertex specifies the value
that the MDD has to take under this input vector.

The above definition of MDDs does not specify what the label of a vertex can be.
Obviously, it can be input ports of the circuit: the logical function that specifies the
outputs depends on the inputs.

Fig. 4. A simple example of MDD.

We also want to be able to use internal variables in the circuit. To achieve this
goal, we consider an internal variable as a MDD. Therefore, the label of a vertex can
also be another MDD, which specifies an internal variable.

4.2 Direct and acknowledgment MDDs

A communication channel holds not only data, but also request and acknowledgment
signals. The request signal is computed with the data, thanks to the 1-of-n DI code.

However the acknowledgment signal of the input channels needs to be computed
separately. Moreover, not all input channels are read at each computation level; the
circuit must not acknowledge an input channel that has not been read.

For each output channel, our model contains a MDD that specifies the logic
function computed and is called a direct MDD. For each input channel, it contains
one MDD, called an acknowledgment MDD. Acknowledgment signals are
considered as 1-of-n DI code with n=1: an acknowledgment MDD has only one
terminal, and specifies the conditions under which the channel must be
acknowledged. Fig. 5 illustrates the MDDs of the example 3.4.
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Fig. 5. MDDs modeling the circuit specified in 2.4.
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5 Basic gates synthesis from the MDDs

There are several steps to synthesize a circuit using basic two-input gates. First, a
factorization is done between the different MDDs to share the common parts. Then, a
reduction is applied to decrease the number of vertices in each MDD. Finally, each
node of each MDD is synthesized using two-input gates.

5.1 Factorization

The factorization algorithm extracts the common part of a set of MDDs as an internal
MDD, as illustrated in Fig. 7.

To preserve the QDI property, the factorization algorithm must ensure that it
extracts at least one node in each path of the MDD: otherwise, the extracted MDD
could become valid but be ignored in the calculation of the circuit’s outputs,
remaining unacknowledged and therefore violating the QDI property. To ensure this,
the algorithm only extracts common parts that include the root vertex. Since we try
all possible ordering of the variables, this restriction does not limit the efficiency of
the algorithm. Fig. 6 shows the result of this algorithm when applied to the MDDs of
Fig. 5.

inputs
outputs
inputs
outputs

Fig. 7. Before and after the factorization of a set of MDDs. E is the common part extracted
from A, B and C.

5.2 Reduction

This step is similar to the reduction of BDDs: it merges the identical vertices of the
MDD, which decreases their number and thus the size of the circuit. Note that this is
different from factorization: the reduction acts on the structure of one MDD, whereas
the factorization acts on the logical functions represented by a set of MDDs,
independently of their structure.

5.3 Synthesis using basic two-input gates

To synthesize the circuit modeled by composed MDDs, each MDD is synthesized as
a block of the circuit.
The algorithm is specified by the following rules:

*  Each arc in a MDD corresponds to a rail in the circuit.
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*  Multiple arcs directed to the same vertex are grouped by an OR gate.

* A non-terminal vertex is implemented as set of two-input Muller gates
that synchronize each rail of its variable with the in-going arc. The
Muller gates outputs are the out-going arcs of the vertex.

* A terminal vertex with value i represents rail number i of the MDD.

Fig. 8. Example of basic two-input gates synthesis of a MDD.

Fig. 9 presents the synthesized circuit from the MDDs of Fig. 5.

6 Technology mapping

We first present a library of asynchronous standard cells we have developed and
called TAL. Then, we give different results obtained by using this library in the
design of the digit-slice radix 4 ALU, instead of the ST standard library. Finally we
compare our asynchronous circuit to a synchronous equivalent circuit.

6.1 TAL library

The TAL library has been developed to design asynchronous circuits with the aim to
reduce their area, consumption and increase their speed [14]. This library contains
about 160 cells (representing 42 functionalities), and has been designed with the
130nm technology of STMicroelectronics. The main functionalities of the library are
useful asynchronous functions as Muller gate, Half-Buffers, Mutex and complex
gates as Muller-Or, Muller-And, ...

To clarify what gains should be attributed to a dedicated asynchronous library,
Wwe can view in

Table 1 the comparison, between basic cells of the TAL library and their
standard cells equivalent, in terms of number of transistors and area. For example,
the Muller gate presented in 3.4 is build with 9 transistors in the TAL library (for a
Muller gate with 2 inputs). With standard cells we have to use an optimized AO222
gate with a loop as described in Fig. 10, made of 14 transistors, to find the
functionality of a Muller gate.
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Fig. 9. Basic two-input gates circuit synthesized from the MDDs of Fig. 5.
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W 3=

Fig. 10. Muller Gate in standard cells.

Table 1. Differences between TAL and Std cells implementations of basic functions.

TAL Lib Std cells
Function Nb of Nb of Gain (area)
transistors/ transistors/
Area (um?) Area (um?)
Muller 2 9tr./ 14,12 14 tr. /20,17 30 %
Muller 4 13 tr./ 18,15 42 tr./ 60,51 70 %
Half-Buffer 28 tr. /40,34 44 tr./ 62,53 35%

The average gain in term of area for all the TAL library compared to the standard
ST library is around 35%.

6.2 Technology mapping algorithms

The main difficulty before mapping a library on asynchronous circuits is to
decompose them and ensure to keep their property of quasi delay insensitivity.

For example, it’s difficult to decompose a Muller gate with 3 inputs in 2 Muller
gates with 2 inputs without introducing a hazard. This decomposition is automatic
for an OR gate. This is described in Fig. 11.

a) b)

Fig. 11. Naive Muller decomposition introduces hazard.

In case a), the three inputs of the Muller gate are different and the output keeps its
value 0. After the decomposition (b), the first Muller gate output switches while the
output of the second one doesn’t change. Thus the output of the first Muller gate is
not acknowledged causing a possible glitch in the circuit with the next set of inputs.

The synthesis method presented in 0 ensures that the circuits obtained are QDI
and formed of two-input gates. Thus the decomposition phase is done and the
technology mapping consists in merging gates to obtain an optimized circuit
following a selected criteria (area, speed, ...). Merging gates do preserve delay
insensitivity.
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We decide to implement known synchronous algorithms of technology mapping
[15-17] and adapt them to asynchronous circuits. Some algorithms of technology
mapping exist for asynchronous circuits [18-20], but the aim of these algorithms is
mainly to decompose circuits without hazards, and as we have seen before, the
decomposition is solved.

Moreover, technology mapping has been an important domain of research in the
synchronous world and the resulting algorithms are very powerful. Thus we extend
the method presented in [16] because the technology mapping algorithm presented in
this paper has really great performances. Thereby we represent the input library cells
as tree of OR, AND and MULLER gate and we keep the structural relationship
between the library cells using lookup table. These trees are then mapped on the
netlist representing the circuit with the same algorithms as for synchronous circuits.

6.3 Results

In the following section, we intend to evaluate in terms of area the gain due to the
TAL library and the gain due to the technology mapping algorithms.

The circuit netlist of Fig. 9 comprises 95 OR gates and 107 MULLER gates. The
Table 2 compares the number of transistors and the area of the circuit, before place
and route, using the TAL library or the ST standard library.

Table 2. Circuits with TAL or ST standard cells.

TAL Standard ST
library cells
Nb of transistors 1533 2068
Area (um2) (before
placement and 2469 3116,36
routage)

We can conclude out of this figure that without any optimization of the netlist, if
we only use TAL cells instead of the standard cells to build Muller gates, the number
of transistors decreases by 35% and the area of the circuit decreases by 21%.

Now we want to evaluate the gain brought by the technology mapping algorithms
on the netlist of the digit-slice radix 4 ALU. We can view results of algorithms in the
Table 3. During the mapping phase, only complex gates of the TAL library are used
as Muller-Or22, Muller-Or21. OR2 gates are also merged in OR3 and OR4 gates.

Table 3. Results of technology mapping algorithms.

Native TAL Optimized TAL
netlist netlist
Nb of transistors 1533 1034
Area (pm2)
(before placement 2469 1401,95
and routing)
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We can notice a decrease of 32% of the number of transistors, and a decrease of
43% of the area of the circuit compared to the same circuit netlist using the TAL
library without technology mapping algorithm applied. We thus note a decrease of
around 50% of the number of transistors and area compared to the initial netlist using
the ST standard cells library.

Another interesting point is to compare these circuit characteristics with an
equivalent synchronous digit-slice radix 4 ALU. The asynchronous circuits remain
bigger than their synchronous equivalent because of the delay insensitive code and
the local controls of the circuit. However our goal is to reduce this difference as
much as possible by applying aggressive technology mapping algorithms on the
circuit and by using cells library specially designed for asynchronous circuit.

We describe the digit-slice radix 4 ALU using the VHDL language. As we want
to compare our version to a synchronous circuit, we add a clock in the description. In
fact, the outputs are memorized in the asynchronous circuit with the Muller gate. In
the synchronous version, we have to add registers on each output, to achieve this
memorization.

To synthesize this circuit, we used Design Analyser from Synopsys and the ST
standard cells library. Table 4 shows the results.

Table 4. Comparison with the equivalent synchronous circuit.

Optimized TAL Synchronous
netlist netlist
ND of transistors 1034 386
Area (! m?)
(before placement 1401,95 476, 06
and routage)

We can conclude that the synchronous circuit is less than 2,9 times smaller, and
contains 2.7 times less transistors than the asynchronous one.

7 Conclusion

This paper presents a general method to model and synthesize asynchronous
optimized QDI circuits. The method allows synthesizing circuits using multi-rail
logic and maps them on to single output standard cells. Direct and reverse
(acknowledge) paths are automatically and jointly synthesized. A first netlist of the
circuit, containing only two-input gates is generated. Technology mapping is then
applied targeting a dedicated asynchronous library to optimize the circuit area.
Others criteria of optimization could be selected as well but the paper focuses on
area which is one of the must important challenge.

The method based on Multi-valued Decision Diagrams, is illustrated on a digit-
slice radix 4 ALU. We present different versions of the same circuit to evaluate the
gain introduced by the asynchronous library and by the technology mapping
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algorithm. The last results show that our circuit is still 2.9 times larger than the
synchronous one.

Future work will be focused on improving the methodology by working in two
directions: logic synthesis and complex cells specification.
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Abstract. This paper describes the high-level system modeling and functional
verification of a novel 3D vertically integrated Adaptive Computing System-
on-Chip (ACSoC), which we term 3D-SoftChip. The 3D-SoftChip comprises
two vertically integrated chips (a Configurable Array Processor and an
Intelligent Configurable Switch) through an Indium Bump Interconnection
Array (IBIA). This paper also describes an advanced HW/SW co-design and
verification methodology using SystemC, which has been used to verify the
functionality of the system and to allow architectural exploration in the early
design stage. An implementation of the MPEG-4 full search block matching
motion estimation algorithm has been applied to demonstrate the architectural
superiority of the proposed novel 3D-ACSoC.

1 Introduction

As the microelectronics industry enters the nano and giga-scaled integrated
circuit era, system design is becoming increasingly challenging as the complexity of
integrated circuits (ICs) rises exponentially. The keenly shortened time-to-market
period and relentlessly increased non-recurring engineering (NRE) cost are also
becoming ever more problematic factors. Another growing problem is related to
interconnection densities, as semiconductor geometries continue to shrink the system
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Pfleiderer, H-J., (Boston: Springer), pp. 71-86.
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performance of ICs is increasingly dominated by interconnection performance.
Moreover, most current systems have highly demanding data bandwidth
requirements, particularly for real-time communication or video processing
applications. To address this interconnection and system-on-chip complexity crisis,
innovative new computing systems with novel interconnection methods will be
required. A very promising candidate to overcome these problems is the concept of a
3D integrated adaptive computing system-on-chip (3D-ACSoC). This concept may
well be a critical technology for the next generation of computing systems because
of its wide applicability/adaptability and because of the significant benefits gained
from 3D systems such as a reduction in interconnect delays and densities, and
reduction in chip areas due to the possibility for more efficient layouts etc. This
paper describes the modeling and functional verification of such a 3D-ACSoC, the
3D-SoftChip [1, 2].

Conventional SoC design methodologies include many error-prone and tedious
iteration processes, which can result in a lack of system reliability and extend the
design time. Moreover, the portion taken up by verification processes in the total
design time is exponentially increasing. By adopting the proposed SoC design
methodology using SystemC, the design time can be significantly reduced and more
reliable systems can be realised.

Figure 1 illustrates the physical architecture of the 3D-SoftChip comprising the
vertical integration of two 2D chips. The upper chip is the Intelligent Configurable
Switch (ICS). The lower chip is the Configurable Array Processor (CAP).
Interconnection between the two planar chips is achieved via an array of indium
bump interconnections.

Intelligent Configura tion
Switch (ICS)

-

-

Indium Bump <L " 0" A "

Interconnec!
Configurable Array
Processor (CAP)

Fig. 1. 3D-SoftChip Physical Architecture

The rest of the paper is organized as follows: Section 2 introduces an overview
of 3D adaptive computing systems. Section 3 describes the overall architecture and
the salient features of 3D-SoftChip. A suggested HW/SW co-design and verification
methodology for development of the 3D-SoftChip is described in Section 4. Section
5 provides high-level modeling using SystemC and application mapping. Finally,
some conclusions are made in Section 6.
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2 3D Adaptive Computing Systems

2.1 3D-SoC Overview

3D systems are becoming an increasingly promising technology to combat the
current wiring crisis. Previous work has shown that the 3D integration of systems has
a number of benefits [3, 4]. As described by Joyner, et al, 3D system integration
offers a 3.9 times increase in wire-limited clock frequency, an 84% decrease in wire-
limited area or a 25% decrease in the number of metal levels required per stratum.
There are three feasible 3D integration methods; a stacking of packages, a stacking
of ICs and Vertical System Integration as was introduced by IMEC [5]. There are
four main enabling technologies for the fabrication of 3D-ICs, Beam recrystallization,
Silicon Epitaxial Growth, Solid Phase Crystallization and Processed Wafer Bonding

[6].

Table 1. 3D Fabrication Technologies

3D Fabrication Characteristics
Technologies

Deposit poly-silicon and fabricate Thin-Film Transistors (TFTs)
High Performance of TFT’s
Beam The high melting temperature of poly-silicon means it is probably not a
Recrystallization practical fabrication technology
Suffers from low carrier mobility

Epitaxially grow a single crystal Si
Silicon Epitaxial High temperature causes degradation in quality of devices
(SE) Growth Process not yet manufacturable

Low temperature alternative to SE
Solid Phase Flexibility of creating multiple layers
Crystallization Compatible with current processing environments
Useful for stacked SRAM and EEPROM cells

Bond two fully processed wafer together
Similar electrical properties on all devices

Processed Wafer Independent of temperature since all chips are fabricated then bonded
Bonding Good for applications where chips do independent processing
Lack of precision (alignment) restricts inter-chip communication to global
metal line

Table 1 shows the main characteristics of each of these 3D fabrication
technologies. In this research, however, the focus is on an indium bump
interconnection array (IBIA). The reason why wafer bonding technology is adopted
for this work is because the process has particular benefits for applications where
each chip carries out independent processing. The characteristic of the 3D-SoftChip
is that each of the two planar chips should be effectively manipulated to maximize
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computation throughput with parallelism. The use of 3D flip-chip wafer bonding
technology allows relatively easy signal distribution because signal connections can
be made between the two vertically integrated planar chips. Moreover, it has low
parasitics (inductance, capacitance), and up to four orders of magnitudes smaller RC
parameters, allowing fast signal transmission over a large chip area with little
attenuation and minimum global clock skew while local clock skew is also kept low.
Indium is chosen for the interconnects as it has good adhesion, a low contact
resistance and can be readily utilized to achieve an interconnect array with a pitch as
low as 10um. The development of 3D integrated systems will allow improvements in
packaging cost, performance, reliability and a reduction in the size of the chips.

JCSLhIpi - Indium Bumps

Subtrate / CAP Chip

Bonding Pad

- - e
By s v o - _al o

Fig. 2. 3D Flip-Chip Wafer Bonding Technology using Indium Bump Interconnection Array
(IBIA)

2.2 Adaptive Computing Systems

A reconfigurable system is one that has reconfigurable hardware resources that
can be adapted to the application currently under execution, thus providing the
possibility to customize across multiple standards and/or applications. In most of the
previous research in this area, the concepts of reconfigurable and adaptive computing
have been described interchangeably. In this paper, however, these two concepts will
be more specifically described and differentiated. Adaptive computing will be treated
as a more extended and advanced concept of reconfigurable computing. Adaptive
computing will include more advanced software technology to -effectively
manipulate more advanced reconfigurable hardware resources in order to support
fast and seamless execution across many applications. Table 2 shows the differ-
entiations between reconfigurable computing and adaptive computing

Table 2. Reconfigurable Vs Adaptive Computing Systems

Reconfigurable Systems Adaptive Computing Systems
Linear array of homogeneous Heterogeneous algorithmic
Hardware elements(Logic gates, look-up  elements(Complete function units such

Resources tables) as ALU, Multiplier)
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Reconfigurable Systems

Adaptive Computing Systems

Static, Dynamic Configuration,

Configuration Slow reconfiguration time
Mapping Manual routing, conventional
Methods ASIC design tools (HDL)

Large Silicon area, Low

Characteristics ~ speed(High capacitance), High

power consumption, High cost

Dynamic, Partial run-time
reconfiguration

High-level language (SystemC, C)
Smaller Silicon size, High speed, High

performance, Low power consumption,
Low cost

2.3 Previous Work

Adaptive computing systems are mainly classified in terms of granularity,
programmability, reconfigurability, computational methods and target applications.
The nature of recent research work in this area according to these classifications is

shown in Table 3.

Table 3. Reconfigurable and Adaptive Computing Systems

System Granularity /  Programmability ~Reconfiguration Computation Target
PE Type Method Application
RapiD [7] Coarse(16bits), Single Static Linear Array Systolic arrays,
Homogeneous Data-intensive
RAW [8] Mixed, Single Static MIMD General purpose
Homogeneous
MorphoSys [9]  Coarse(16bits), Multiple Dynamic SIMD Data-parallel,
Homogeneous Computation
intensive app.
QuickSilver Coarse(8,16,24,3 Multiple Dynamic Heterogeneous Comm.
Adapt2400 [10] 2bits), Node Array Multimedia DSP
Heterogeneous
Elixent Coarse(4bits), Multiple Dynamic Linear D-Fabric ~Multimedia app.
DFA1000 [11] Heterogeneous Array
picoChip Coarse(16bits), Multiple Dynamic 3way-LIW Wireless Comm.
PC102 [12] Heterogeneous
3D-SoftChip Coarse(4bits), Multiple Dynamic Various types of Comm.
Heterogeneous computation  Multimedia DSP
models

This table shows that the early research and development was into single linear
array type reconfigurable systems with single and static configuration but that this
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has evolved towards large adaptive SoCs with heterogeneous types of reconfigurable
hardware resources and with multiple and dynamic configurability. As illustrated
above, the 3D-SoftChip has several architectural superiorities when compared with
conventional reconfigurable / adaptive computing systems resulting from the 3D
vertical interconnections and the use of state of the art adaptive computing
technology. This makes it highly suitable for the next generation of adaptive
computing systems.

3 3D-SoftChip Architecture

Figure 3 shows the overall architecture of the 3D-SoftChip. As can be seen, it
is comprised of 4 UnitChips. Each UnitChip has 16 sets of heterogeneous arrays of
Processing Element (PE), a 32-bit dedicated RISC control processor and a high
bandwidth data interface unit. A more detailed description of the architecture and
interconnection network can be seen in [1].
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PE PE
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Fig. 3. .Overall Architecture for 3D-SoftChip

3.1 Overall Architecture of 3D-SoftChip

According to a given application program, the PE array processes large amounts
of data in parallel while the ICS controls the overall system and directs the PE array
execution and data and address transfers within the system.
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3.2 Overall Architecture of 3D-SoftChip

The 3D-SoftChip has 4 distinctive features: Various types of computation model,
adaptive word-length configuration [2, 13], optimized system architecture for
communication and multimedia signal processing and dynamic reconfigurablility for
adaptive computing.

3.2.1 Computation Algorithm

As described above, one 32-bit RISC controller can supply control, data and
instruction addresses to 16 sets of PEs through the completely freely controllable
switch block so various computation models can be achieved such as SISD, SIMD,
MISD, MIMD as required. Enough flexibility is thus achieved for an adaptive
computing system. In the SIMD computation model, 3 types of different SIMD
computation can be realized; massively parallel, multithreaded and pipelined [14]. In
the massively parallel SIMD computation model, each UnitChip operates with the
same global program memory. Every computation is processed in parallel,
maximizing computational throughput. In the Multithreaded SIMD computation
model, the executed program instructions in each UnitChip can be different from the
others, so multithreaded programs can be executed. The final one is the pipelined
SIMD computation model. In this case each UnitChip executes a different pipelined
stage.

3.2.2 Word-length Configuration

This is a key characteristic in order to classify the 3D-SoftChip as an adaptive
computing system. Each PE’s basic processing word-length is 4-bit. This can,
however, be configured up to 32-bit according to the application in the program
memory. This flexibility is possible due to the configurable nature of the arithmetic
primitives in the PEs [13] and the completely freely controllable switch block
architecture in the ICS chip.

3.2.3 Optimized System Architecture for Communication and Multimedia
Signal Processing

There are many similarities between communications and multimedia signal
processing, such as data parallelism, low precision data and high computation rates.
The different characteristics of communication signal processing are basically more
data reorganization, such as matrix transposition, and potentially higher bit level
computation. To fulfill these signal processing demands, each UnitChip contains two
types of PE. One is a standard-PE for generic ALU functions, which is optimized for
bit-level computation, the other is a processing accelerator-PE for DSP. In addition,
special addressing modes to leverage the localized memory along with 16 sets of
loop buffers to generate iterative addresses in the ICS add to the specialized
characteristics for optimized communication and multimedia signal processing.

3.2.4 Dynamic Reconfigurability for Adaptive Computing
Every PE contains a small quantity of local embedded SRAM memory and
additionally the ICS chip has an abundant memory capacity directly addressable
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from the PEs via the IBIA. Multiple sets of program memory, the abundant memory
capacity and the very high bandwidth data interface unit makes it possible to switch
programs easily and seamlessly, even at run-time.

4 HW/SW Co-design and Verification Methodology

Figure 4 shows the HW/SW co-design and verification methodology for the 3D-
SoftChip. Once HW/SW partitioning has been executed, the HW is modeled at a
system level using SystemC [15] to verify functionality of the operation and to
explore various architecture configurations while concurrently modeling the software
in C. After this, a co-simulation and verification process is implemented to verify the
operation and performance of the 3D-SoftChip architecture and to decide on an
optimal HW/SW architecture at the early design stage. The rest of the procedure can
be processed using any conventional HW/SW design methodology.
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Fig. 4. Suggested HW/SW co-design and verification methodology
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More specifically, the SW is modeled using a modified GNU C compiler and
Assembler. After the compiler and assembler for ICS_RISC has been finalized, a
program for the implementation of the MPEG-4 motion estimation algorithm will be
developed and compiled using it. After that, object code can be produced, which can
be directly used as the input stimulus for an instruction set simulator and system
level simulation. The HW/SW verification process can be achieved through the
comparison between the results from instruction level simulation and system level
simulation. From this point on, the rest of the procedure can be processed using any
conventional HW design methodology, such as full and semi-custom design.

S High-level System Modeling and Application Mapping

The high-level system modeling has been accomplished using SystemC. A PC
based development environment (Microsoft Visual C++ Version 6.0) has used to
compile the high-level modelled SystemC code because of its easy accesibility.
Figure 5 shows the UnitChip block diagram, SystemC file structure and the output
waveform from the system-level modeling. The composition of the UnitCAP and
UnitICS becomes the UnitChip. It can be largely divided into 4 kinds of sub-
SystemC files, that is ICS_RISC, Memory, DMA and UnitCAP. The simple ALU
instruction has been mapped in this system-level modeled UnitChip. The simulation
result shows its functionality. In Figure 5(c), the upper side circle indicates the
ICS_RISC operation result, and lower circle shows the PEs’ operations, which is the
execution of simple ALU functions in the PEs’ with parallelism. The signal named
as a PE1.dOut refers to the output signal from PE1. The functionality can be verified
by checking these signals (from PE1~PE16) and is as expected.

SystemC.h

e (R =
Data Inputs | dout
| Testbench.cpp ‘ICS_R\SC.cpp Mermory.cpp DMA.cpp UnitCAP.cpp
Stimulus | nstructions e Testbench.h ICS_RISC.h Memory.h DMAK UnitCAR.h
UnitChip
(UnitiCS/ &
UnitCAP)
Clock
> main.cpp

Clock
oc| | ) V

(a) (b)
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Fig. 5. System-level modeling of 3D-SoftChip: (a) UnitChip block diagram, (b) SystemC file
structure of UnitChip and (c) the output waveform of system-level modeled UnitChip

5.1 Application Mapping for 3D-SoftChip

5.1.1 Full Search Block Matching Algorithm

Motion Estimation (ME) is introduced to exploit the temporal redundancy of video
sequences and is an indispensable part of video compression standards such as the
ISO/IEC, MPEG-1, MPEG-2, MPEG-4 and the CCITT, H.261/ITU-T, H.263 etc.
Since ME is computationally the most demanding portion of the video encoder, it
can take up to 80% of total computation time and it can be a major limiting factor for
real-time performance. Among the many different ME algorithms, Full Search Block
Matching (FBMA) is one of the most widely used in hardware, despite its high
computational cost, because it has the optimal performance and lowest control
overhead. The block matching motion estimation algorithm compares a specific
sized block of pixels in the current frame with a range of equally sized pixel blocks
in the previous frame to find the best match (minimum difference) between two of
the blocks. The position of the best matched block can then be encoded as a motion
vector for the reference block minimizing the total entropy in the frame. In FBMA
the best match is determined by calculation of the sum of absolute differences (SAD)
for each candidate search location (dx, dy) to find the minimum SAD, the SADs are
calculated as follows:

x+N-1y+N-1

SAD(dx,dy) = E E [ I,(m,n)—1I,_ (m+dx,n+dy)|

m=x  n=y
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Where [, (m,n), I,_,(m+dx,n+dy) are intensity values of the pixels located at

position (m,n) in the current and previous frame blocks respectively. In Figure 6,
(x,y) indicates the current block pixel location, it is matched to every candidate
search location within a (2p + N-1)x(2p + N -1) search window area, where [-p, p-1]

is the pixel search range. The SAD value is calculated for every candidate block with
a displacement (dx, dy)

Previous Frame

Candidate Block

TR U A dy)
Candidate MV Y, H

\‘/v/

2N L O+ N +|dx, y Nady)

Current Frame

Search area

(x¥)
Nv N

Current block NN

Nh

Fig. 6. Block Matching Motion Estimation

Once the SAD for each subsequent candidate block is calculated, it is compared to
the existing SAD, if it is smaller than a new motion vector is stored. The calculation
of SAD values and the matching process continues until all candidate blocks are
matched and the overall minimum SAD is found. The stored motion vector is then
the vector to the block with the best result for displacement (dx,dy), which has the
minimum SAD.

5.2 FBMA Mapping Method for 3D-SoftChip

Figure 7. shows the mapping method and data flow for implementation of the
FBMA to the system-level modeled 3D-SoftChip. The FBMA mapping is
accomplished over 10 distinct stages.

In this mapping, it is assumed the basic word-length of the S-PEs and PA-PEs is
8-bit (a simple matter of architecture scaling within each PE). The detailed
explanation of this mapping is as follows:

1) STEP 1-Load REF. BLOCK DATA INTO PE ARRAY SRAM: The first
operation is to load reference block data (/, (m,n) ) into embedded SRAM in each

PE in the array.

2) STEP 2-EACH PE MOVES THIS DATA TO INTERNAL REGISTER: Each
PE moves the reference data from the embedded SRAM into an internal register so it
is available to be used for calculation of SAD values for the entire search window.
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3) STEP 3-LOAD FIRST SEARCH POSITION BLOCK DATA INTO PE
ARRAY SRAM: The block data for the first search position (/,_ (m + dx,n+dy)) is

then loaded into the embedded SRAM in each PE in the array ready for calculation
of the SAD value between the reference block and this first search position .

4) STEP 4-EACH PE EXECUTES SUBSTRACTION AND ABSOLUTE
VALUE COMPUTATION: In this step, each PE carries out a subtraction operation
between the reference block data and the current search position in SRAM, the
absolute value of this resulting difference is stored as the absolute difference value
for that block position.

5) STEP 5-PARTIAL SUMMATION (1): In this step every odd columned PE
performs a partial sum operation of its absolute difference value with the value from
the PE to its immediate right in the array, the result is stored as a double-word value
across both PEs.

(1) Load Ref Block and 1st Search Block Data /B|A
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Fig. 7. Mapping Method for Full Search Block Matching and Data Flow
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6) STEP 6-PARTIAL SUMMATION (2): In this step the two partial sums
computed in the previous step are summed in the same way, every odd columned PE
pair sums its result with the result from the PE pair to its right, this result is stored as
a quad-word value across all four PEs in each row

7) STEP 7-PARTIAL SUMMATION (3): In this step the column wise operation
carried out in step 5 is repeated row wise to accumulate another set of partial sums,
in this case, however, the second row of PEs accumulated its result with the result
from the row above, while the third row of PEs accumulates its result with the result
from the row below.

8) STEP 8-PARTIAL SUMMATION (4): In this final partial sum accumulation,
the second row of PEs sums its result with the result from the third row, producing
the total SAD value for that search position.

9) STEP 9-WRITE BACK RESULT DATA TO THE ICS_RISC: Finally the
resultant SAD value calculated in STEP 8 is written back to the internal register in
the ICS_RISC for comparison with the previous minimum and updating of the
motion vector if applicable.

10) STEP 10-REPEAT STEPS 4 TO 9: The next search position data block can
be loaded into the SRAM in the PE array while the SAD calculation is being carried
out for the current search position so once the result had been written back the
calculation of the SAD for the next search position can be begun immediately.

5.3 Performance Analysis

Figure 8 shows the performance comparison of the 3D-SoftChip with a DSP
processor, several ASICs and MorphoSys for matching on 8§ " 8 reference block
against its search area of 8 pixels displacement. There are 81 candidate blocks (27
iterations) in each search area [16]. In the 3D-SoftChip, as described above, the
number of processing cycles for one candidate block is just 7 clock cycles (each
UnitChip computes one quarter block, so with 4 UnitChips one complete block is
computed every 7 cycles), so the total number of processing cycles for the 3D-
SoftChip becomes 567 (81 iterations of 7 cycles each).

The number of clock cycles required is very close to that reported for
MorphoSys, with just 4 UnitChips, this, however, can readily be improved simply by
increasing the number of UnitChips on a scaled up 3D-SoftChip. A 4"4 UnitChip
array, for example, would have an effective throughput of one block every 142
cycles. In addition to this, considering the characteristics of the 3D system, there are
other significant advantages. Data dependency is largely eliminated so that after the
initial set-up there is a 100% PE utilisation. The reference and candidate block data
can be moved into the embedded SRAM in the PE concurrently with array
execution, so the PEs can operate continuously. Also low power consumption can be
achieved through a minimisation of the number of data accesses, because most of
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data manipulation can be executed within the PE array. Most importantly, however,
because all memory is directly accessible within the 3D-SoftChip via the IBIA there
are effectively zero external data reads and thus power consumption will be greatly
improved over all the other approaches.

Clock Cycles
2100
1159
581 |
[ 540
TMS320C64x ASIC ASIC MorphoSyd4 UnitChipg]l6 UnitChips]
7] [e] (o] (el 3D-SoftChip

Fig. 8. Performance comparison for Motion Estimation

When comparing with the performance of the DSP processor and dedicated
ASICs, the performance of the suggested 4x4 UnitChip 3D-SoftChip has remarkable
advances with a theoretical capability of more than 3.8 times the performance. Given
its wide applicability/adaptability to any number of other applications, the
performance achieved compared to these dedicated processors is a potentially
enormous advancement. This clearly demonstrates the architectural superiority of the
suggested novel 3D-SoftChip.

6 High-level System Modeling and Application Mapping

The novel 3D vertically integrated adaptive system-on-chip architecture as a next
generation computing system along with its functional verification and the mapping
of an MPEG4 motion estimation algorithm has been presented. The performance of
the execution of the MPEG full search block matching algorithm has been shown to
be potentially more than 3.8 times improved over current generation processors. Due
to these significant performance, power and cost advantages it can be shown that the
suggested 3D-ACSoC is one of the most suitable architecture for the next generation
of computing system. Moreover, the advanced HW/SW co-design and verification
methodology can accelerate the reliability and significantly reduce the design time,
especially the time and effort required for verification. This paper indicates a highly
promising research direction for future adaptive computing systems and advanced
and efficient HW/SW development methodology for ever more complicated SoCs.
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Abstract. This paper aims at introducing a complete methodology that
allows to easily implement on an FPGA a system specification by exploit-
ing the capabilities of partial dynamic reconfiguration provided by the
modern boards. In the resulting system, which includes a set of fixed
components (such as a processor and a controller) as well as some re-
configurable area (which can be allotted to different tasks running con-
currently and replaced independently of one another — thus possibly
hiding reconfiguration times), reconfiguration is handled internally by
the system, without the use of external hardware. In order to meet the
software requirements of complex systems, the solution is provided with
a porting of a real-time GNU/Linux 0s, #CLinux, which allows software
processes to exploit a rich set of features, and with a Linux module that
simplifies and enhances the handling of reconfiguration.

1 Introduction

To cope with changing user requirements, evolving protocols and data—coding
standards, together with demands for the support of a variety of different user
applications, many emerging appliances in communication, computing and con-
sumer electronics need that their functionalities remain flexible after the system
has been manufactured. FPGAs provide a means to meet these requirements, and
have thus received increasing attention over the last years: not only they can im-
plement arbitrary logic functions, but can also be reprogrammed an unlimited
number of times during their lifetime.

Most applications running on FPGA-based systems are implemented using a
single configuration per FPGA. This means that the functionality of the circuit
does not change while the application is running. Such an application can be
referred to as being Compile-Time Reconfigurable (CTR), because the entire
configuration is determined at compile-time and does not change throughout
system operation. Another strategy is that of implementing an application with
multiple configurations per FPGA. In this scenario the application is divided into
time—exclusive operations that need not (or cannot) operate concurrently. Each

Donato, A., Ferrandi, F., Redaelli, M., Santambrogio, M.D., Sciuto, D., 2007, in IFIP International Federation
for Information Processing, Volume 240, VLSI-SoC: From Systems to Silicon, eds. Reis, R., Osseiran, A.,
Pfleiderer, H-J., (Boston: Springer), pp. 87—109.
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of these operations is then implemented as a distinct configuration which can be
downloaded onto the FPGA as necessary at run—time. This approach is referred
to as Run—Time Reconfiguration (RTR) or Dynamic Reconfiguration.

FPGAs approaches to dynamic reconfiguration can be further divided into two
categories: small bits and modular based. The former consists in changing small
portions of the design in order to modify the system behavior — an example
of this reconfiguration technique can be found in Xilinx XAPPs [1,2]. The latter
allows the creation of complex reconfigurable systems, composed of different 1P—
Cores. The Caronte methodology [3-5] describes how to create a flexible system
design, where each core can be seen as a module that implements a specific
functionality of the system.

Reconfiguration can be also classified in terms of external or internal. In the
former scenario there exists an external entity which drives the configuration
— either a PC connected to the board (for example using the JTAG controller)
or some other kind of dedicated device. In this case the FPGA has a passive
role, simply receiving the configuration data from the outside. With internal
reconfiguration, instead, it is the system itself that modifies its own structure,
and the code running on the local processor is communicating with the Internal
Configuration Access Port (ICAP). This allows the system to run without needing
to be connected to other devices, as long as it is possible to store all the necessary
configuration information in the system memory. An example of such a system
is the one proposed in [6].

The last generation of FPGAs, due to the high density of reconfigurable logic
blocks present in the device, allow the designer to implement on them a complete
system. This means that it is possible to include also a general purpose micropro-
cessor, whether hard core or soft core. The designer, thus, must be ready to take
into account also the software requirements of such a specification: in particular
the processor, whether hardcore (such as the Powerpc) or softcore (MicroBlaze
and Neos), typically runs a standalone executable implementing the application
logic and exploiting the underlying hardware. On the other hand, though, there
are scenarios that require the presence of a more complex software system to
manage multiple tasks, interrupts and various system resources. This is the task
typically delegated to an operating system.

There is a huge number of embedded and real-time operating systems, of-
ten built on top of a microkernel implementing basic management of interrupts
and peripheral 1/0. Also GNU/Linux, which is a complete operating system ker-
nel, has been ported to architectures such as Powerpc and MicroBlaze, and
adapted to supp