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IFIP – The International Federation for Information Processing 
 
IFIP was founded in 1960 under the auspices of UNESCO, following the First World 
Computer Congress held in Paris the previous year. An umbrella organization for 

information processing within its member countries and to encourage technology transfer 
to developing nations. As its mission statement clearly states, 
 

organization which encourages and assists in the development, 
exploitation and application of information technology for the benefit 
of all people. 

 
IFIP is a non-profitmaking organization, run almost solely by 2500 volunteers. It operates 
through a number of technical committees, which organize events and publications. 

important are: 
 
• The IFIP World Computer Congress, held every second year; 
• Open conferences; 
• Working conferences. 
 
The flagship event is the IFIP World Computer Congress, at which both invited and 
contributed papers are presented. Contributed papers are rigorously refereed and the 
rejection rate is high. 
 
As with the Congress, participation in the open conferences is open to all and papers may 
be invited or submitted. Again, submitted papers are stringently refereed. 
 
The working conferences are structured differently. They are usually run by a working 
group and attendance is small and by invitation only. Their purpose is to create an 
atmosphere conducive to innovation and development. Refereeing is less rigorous and 
papers are subjected to extensive group discussion. 
 
Publications arising from IFIP events vary. The papers presented at the IFIP World 
Computer Congress and at open conferences are published as conference proceedings, 
while the results of the working conferences are often published as collections of selected 
and edited papers. 
 
Any national society whose primary activity is in information may apply to become a full 
member of IFIP, although full membership is restricted to one society per country. Full 
members are entitled to vote at the annual General Assembly, National societies 
preferring a less committed involvement may apply for associate or corresponding 
membership. Associate members enjoy the same benefits as full members, but without 
voting rights. Corresponding members are not represented in IFIP bodies. Affiliated 
membership is open to non-national societies, and individual and honorary membership 
schemes are also offered. 

societies working in information processing, IFIP’ s aim is two-fold: to support 

IFIP’ s mission is to be the leading, truly international, apolitical 

IFIP’ s events range from an international congress to local seminars, but the most 
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PREFACE 

 
 
 
 
This book contains extended and revised versions of the best 

papers that were presented during the thirteenth edition of the IFIP 
TC10/WG10.5 International Conference on Very Large Scale 
Integration, a Global System-on-a-Chip Design & CAD conference.  
The 13th conference was held at the Parmelia Hilton Hotel, Perth, 
Western Australia (October 17-19, 2005). Previous conferences have 
taken place in Edinburgh, Trondheim, Vancouver, Munich, Grenoble, 
Tokyo, Gramado, Lisbon, Montpellier and Darmstadt. 

 
The purpose of this conference, sponsored by IFIP TC 10 Working 

Group 10.5, is to provide a forum to exchange ideas and show 

 
The 2005 edition of VLSI-SoC maintained the traditional structure, 

which has been successful at the previous VLSI-SOC conferences. 
The quality of submissions (107 papers from 26 countries) made the 
selection process difficult, but finally 63 papers and 25 posters were 
accepted for presentation in VLSI-SoC 2005. Out of the 63 full papers 
presented at the conference, 20 were chosen by a selection committee 
to have an extended and revised version included in this book. These 
selected papers came from Australia, Brazil, France, Germany, Italy, 
Korea, Portugal, Sweden, Switzerland, United Kingdom and the 
United States of America. 

 

 

 

industrial and academic research results in the field of  micro- 
electronics design. The current trend toward increasing chip integra-
tion and technology process advancements brings about stimulating
new challenges both at the physical and system-design levels, as 
well in the test of these systems. VLSI-SOC conferences aim to 
address these exciting new issues.  



 

VLSI-SoC 2005 was the culmination of many dedicated 
volunteers: paper authors, reviewers, session chairs, invited speakers 
and various committee chairs, especially the local arrangements 
organizers. We thank them all for their contribution.  

 
This book is intended for the VLSI community mainly to whom 

that did not have the chance to take part in the VLSI-SOC 2005 
Conference. The papers were selected to cover a wide variety of 
excellence in VLSI technology and the advanced research they 
describe. We hope you will enjoy reading this book and find it useful 
in your professional life and to the development of the VLSI 
community as a whole. 

 
 

 
 

 The editors 

April 2007 

x Preface 

Furthermore, this book includes an excellent paper entitled 
“Molecular Electronics – Devices and Circuits Technology” presented 
at the conference, as an invited talk, by Professor Paul Franzon from 
North Carolina State University. 
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bulk electronic devices.  However, practical issues have limited that 
potential to date.  This paper reviews the function and design of 
molecular electronics and evaluates results to date in a circuits context. 
 

1. Introduction 
 
Molecular electronics has several potential advantages for being of interest as an 

electronic element.  It has small size, typically on the range of a few nm, well below 
the total size projected for any FET.  A second advantage is that molecules can self 
assemble onto surfaces, a very low-cost process.  Their third advantage is that they 
can be designed at the atomic level, a feat not possible with bulk devices.  Atomic 
level design permits a wide range of devices to be investigated, and potentially leads 
to precise control of electronic properties. For example, switching between isomers 
of the same chemistry should lead to radically different device properties. 

these devices within a circuit’s context. 
 

2. Molecular Devices 
 

metallic and semiconducting carbon nanotubes, silicon nanowires, oligo(phenylene 
ethnylene) (OPE) based bistable molecular switches, insulating alkanethiol chains, 

Abstract. Molecular electronics holds significant potential to outscale 

This paper presents a two-level overview of molecular electronics.  Section 2 
focuses on device physics and understanding, while Section 3 evaluates some of 

 

molecular electronics has focused on measuring and predicting electronic transport 
control electronic properties in a circuit [1], the vast majority of research in 

through organic devices.   Organic materials of all types have been studied, including 

for Information Processing, Volume 240, VLSI-SoC: From Systems to Silicon, eds. Reis, R., Osseiran, A., 
Franzon, P., Nackashi, D., Amsinck, C., DiSpigna, N., Sonkusale, S., 2007, in IFIP International Federation  

Since the first suggestion that molecular elements could be designed to 

Pfleiderer, H-J., (Boston: Springer), pp. 1–10. 
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slightly more conductive OPEs and oligo(phenylene vinylene)s (OPVs), and charge-
storage molecular systems such as ferrocenes.  Understanding electron transport and 
charge storage is extremely important to advance the process of engineering 
molecules for specific applications.   

density through doping techniques, designing molecular devices involves modifying 
electronic wavefunctions at a metal-molecule-metal junction [2]  However, as silicon 
devices continue to shrink, the current modeling techniques become less accurate as 

deal of harmony between the fields of silicon nanoelectronics and molecular 
electronics, with each group leveraging off the knowledge created by the other. 

few angstroms to tens of angstroms in length.  With only a few atoms involved in 
electron transfer, the notion of a density of states becomes less accurate and the 
properties of these molecules are better described by the location and energy gaps of 

orbital (LUMO).  With a few exceptions such as metallic and semiconducting carbon 

energy gap within most molecules is likely to be approximately 2-3 eV. 

 
 

will be tunneling, rather than propagation.  A simple approximation for tunneling 
ET = k0e- βd, 

ET

molecule), and β is a constant defined by the electronic structure of the organic layer.   
This approximation simply states that for set of similar molecules varying in length 
(such as alkanethiols with varying numbers of methylene groups), the current density 
(at a given voltage) across the junction will exponentially decrease as the molecular 
length increases.  This is seen quite clearly in alkane chain conductivity research 
using mercury drop electrodes, nanopores and STM analysis.  However comparing 

P. Franzon et al.

Most of the molecular electronic compounds listed above are only just a 

the HOMO-LUMO gap of most molecules.  This is illustrated in Figure 1, where the 

Where silicon device characteristics are engineered by varying the carrier 

the channel lengths no longer exhibit bulk properties [3].  This has resulted in a great 

Fig. 1. Metal-Molecule-Metal junction.  From Samanta et al. [4], “Electronic conduction 

their highest occupied molecular orbital (HOMO) and lowest unoccupied molecular 

through organic molecules.” 

With this model, it is expected that the primary mode of electron transfer 

nanotubes, it is expected that the Fermi levels of the metallic contacts will lie within 

current through a molecular junction can be modeled using the expression, k
where k  is the rate of electron transfer, d is the barrier width (length of the 
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two structurally different molecules whose lengths are the same, research has shown 

parameter β can be used to describe the electron transmission properties of different 
molecules.  

conjugated structure (such as OPEs and OPVs), as compared to the σ-bonded alkane 

suggests that the barrier to electron transfer is lowered within molecules containing 
delocalized electron clouds.  To more accurately account for scattering (which is 
neglected in the tunneling approximation) and the specific electronic structure for 
various molecules, many theorists use Density Functional and Green’s Function 
based approaches for more accurate evaluations.  An example of the value in these 
approaches is shown in Figure 2, where the transmission properties for three 

found to have a lower resistance than the four ring benzene chain, even though the 

Experimental research has shown that molecules exhibiting a highly π-

that the tunneling currents can be very different.  This has lead to the belief that the 

chains, have a much lower gap resistance in metal-molecule-metal structures.  This 

different molecules were calculated and plotted.  Samanta and Datta [4]  found that 

In the same study, Samanta calculated the transmission properties of a two 
ring benzene chain as a function of the ring orientation to each other.  Shown

compared to a shorter, three benzene molecule.  However, a three ring OPE was 

in Figure 3, the most conductive state is when the molecule has no offset, or 

OPE is a longer molecule.  This was attributed to the presence of the triple bond in 

the resistance of a four benzene chain molecule scaled higher as expected when 

Fig. 

the OPE, causing a more delocalized electronic structure.   

From Samanta, et al. [4], “Electronic conduction through organic molecules.”
2. Green-function analysis of electronic transmission through different molecules. 
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is planar, and the least conductive state is when the rings are 90o out of phase.  This 
theoretical work further suggests that delocalized, overlapping p orbitals play an 

was also shown in two separate test structures comparing OPE and OPV molecules.  
OPV molecules, known to be more planar and exhibiting less bond-length 
alternation, were determined to have a slightly lower gap resistance. 

properties through a molecule by twisting or bending the molecular backbone, 
however concentrating a strong enough field in a gap less than 50 angstroms is 
extremely difficult.  A theoretical study of a molecular three terminal device was 
performed by Dattai at Purdue, using a single benzene ring as the conductive 
channel.  To get good control of the channel, i.e., to get a high enough field to 
modulate the device, the equivalent gate oxide would need to be less than 10% of the 
channel length.  This suggests that the gate electrode would need to be within two 
angstroms of the benzene ring, placed within an atomic level of accuracy.  For these 
reasons, most research into molecular electronics has focused on two terminal 
devices, primarily switches.  

 
 

P. Franzon et al.

Many have suggested using a third gate electrode to modulate transmission 

import part in lowering the barrier for electronic conduction.  Experimentally, this 

models has lead to many suggestions for novel, molecular devices.  Shown in Figure 

“Electronic conduction through organic molecules.” 

The growing body of theoretical work and tools used to generate molecular 

Fig. 3. Ring orientation effects on the transmission property.  From Samanta, et al. [4], 
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4 are several examples of these devices, which include switches, wires, rectifiers and 
storage devices.  Of course, the only way to determine the validity of theoretical 
models used to generate these suggestions is through experimental analysis, an area 

theoretical studies have helped to understand the nature of the metal-molecular 

characterization.       
 

 

electronics needs to provide two of more generations of scaling beyond the silicon 18 
nm node.  That is provide continued scaling in some or more metrics of fundamental 
performance in computing, throughput, power per 
operation, and cost per unit throughput; while achieving similar system availability 
and reliability rates to those achieved today. 

electronics, and provide a summary evaluation of the potential, and roadblocks, for 
molecular electronics to provide continued scaling beyond the end of CMOS, in 
these metrics. 

assembled between two gold contacts.  The density potential of this technology is 
evident when it is realized that the molecule illustrated in Figure 5 is only 3.2 nm 
long.  Generally speaking the principle of operation behind these devices is that a 

the electron cloud configuration around the molecule and thus its conductivity.    The 
molecule thus behaves like a tunneling diode.  Measured results have shown 
characteristics that include non-rectifying diodes, rectifying diodes (by using 
different metals in the two contacts), diodes displaying negative differential 

(Figure 6) [1].   Note that in Figure 6 only the rectifying version of the two-state 
diode is shown, as it is much more useful than the non-rectifying version.  Of these 
characteristics devices, only the NDR and the rectifying on-off diodes are useful for 
logic, and even then present challenges over their 3-termimal predecessors. 

Figure 7 shows a possible circuit topology that uses the NDR diode to make a 
NAND gate and a circuit topology to build a programmable logic array using 
rectifying on-off diodes (only the on diodes are shown).  Though the NDR-based 
circuit is impractical, it is included for completeness.  The PLA structure requires a 
gain element to be practical.  It is assumed that it is rebuffered using CMOS gates.  

 

particularly 

These are challenging metrics to evaluate especially for an immature tech- 

It can be argued that to be a true successor technology to CMOS, molecular 

nology.  This section will start off by reviewing the basics behind molecular 

3. Circuits and Scaling for Molecular Electronics 

cular electronic devices are two terminal devices.  For example, the illustration 

computation 

For reasons discussed above, all practical proposed and demonstrated mole-

change in the longitudinal electric field causes a temporary or permanent change in 

In order to evaluate the potential of these devices, NAND gate configu- 

resistance (NDR) and two-state (on-off) diodes, with an on-state and an off-state 

rations were compared  with that of a ~2018 18 nm node CMOS NAND gate.  

in Figure 5 is that of an atomic level presentation of benzene thiol molecules 

is just as much a part of the device as the organic structure itself.  Although 

ent  molecules has proven to be the most challenging aspect of molecular 

just now developing on its own.  The contact to the molecule itself, atomic in nature, 

contact, finding a consistent, scalable and repeatable test bed for comparing differ-
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simple techniques and are likely to be wrong by several orders of magnitude.    The 
area estimate for the PLA is made assuming an 8 nm wire imprint technology and 

P. Franzon et al.

using hybrid-molecular and mono-molecular devices.” 

These three circuit topologies are evaluated against some useful performance- 
related metrics in Table 1.  The values for the 18 nm node NAND gate are taken 
from, or calculated using, data in the International Technology Roadmap  for
Semiconductors.  The values for the molecular circuits are calculated using 

Fig.  4. Suggested molecular electronic devices.  From Joachim et al. [6]  “Electronics 
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(very pessimistically) and 2x area overhead for the peripheral circuits.  The 
molecular device is assumed to have an on current of 500 nA and an off current of 50 
nA.  The delay and power estimates are made from circuit level calculations, not 
from the underlying physics. 

 
 
 
 
 
 
 
 

Fig. 5.  Benzene Thiol molecules between two gold contacts.  (Courtesy, Seminario). 

Fig. 6. Generic IV characteristics for molecular diodes. 
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Fig. 7.  Examples of circuits built using NDR (left side) and rectifying on-off diodes (right 
side). Source[7]. 

 
  

Table 1. Area and Performance Estimates for CMOS and molecular nanotechnologies. 

Circuit Area Energy 
per 010 

transition 

Leakage 
Power 

Delay 

NAND gate 
0.2 

sq.µm 
10-17 J 10-7 W  5 ps 

NDR gate 0.1 
sq.µm? 

10-16 J 10-12 W  1 µs 

2-input NAND  
equivalent 
within larger 
PLA 

0.01 
sq.µm. 

10-16 J 10-7 W 100 ps 

 

which molecular electronics outperforms 18 nm CMOS is area.  Delay is 
significantly worse, and power comparable.  The energy*delay product is worst in 
the molecular case, while the area*delay product is comparable. 

application for molecular electronics is in large relatively slow memories, and 
devices that benefit from such memories.    Then the key question is what is the real 
density likely to be achieved by a molecular memory.  There are two sub questions 
here – what is the peak density and what is the achievable density when peripheral 
circuits are accounted for? 

P. Franzon et al.

Unsurprisingly, given the use of two-terminal devices, the only aspect in 

This analysis leads to the tentative conclusion that most likely the best 

18 nm 2-input 
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be around 5 nm wide.  This gives a unit cell size of 10x10 nm, or a device density of 
10,000 devices per sq.µm., equivalent to a peak density of 1012 devices per sq.cm., or 
more than 10 full length DVD movies on a chip! 

address decoders, sense-amps, etc.   This, in turn, is limited by the largest subarray 
that can be built and read with sufficiently low error rate.  This has been analyzed 
and the results presented in Table 2.  The achievable sub-array size depends solely 
on the on:off ratio achieved by the diode.  For reference, measured data seems to 

nano-engineered device concepts are under investigation that has potential to achieve 
the required on:off ratio. 

 

ratios. 

On:off Ratio Max. Array 

7:1 64x64 

13:1 128x128 

100:1 1225x1225 

1000:1 12kx12k 

8000:1 1Mx1M 

 
4. Conclusions 

 

include the following.  First there is the difficulty of integrating molecules with bulk 
materials in ways that the limitations of the latter do not dominate the device 
operation.  This is why filament switching dominates many of the collected results.  
Second is achieving the challenge of achieving sufficient device performance such 
that molecules can outscale silicon in a metric beside size.  However, with increased 
understanding of molecular design and performance, together with improving 
abilities to fabricate nano-ordered materials, molecular electronics is still a promising 
future technology. 

The peak density is related to the smallest wire that can be imprinted – likely to 

on:off ratios are needed to achieve reasonable overheads.  Fortunately, a number of 

However, the achievable density is limited by the overhead required for 

While molecular electronics holds significant potential, achieving that 

indicate on:off ratios today of around 10:1 for truly molecular devices.  In contrast 

Table 2. The maximum sub-array size that can be built for different molecular diode on:off 

potential in a technologically useful fashion is very challenging. Challenges 

today’s DRAMs are built using 10,000 x 10,000 subarrays.  It is clear that larger 
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and mono-molecular devices,” Nature, 408, 541-548, 2000. 

227-239, 2001. 
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Abstract. The purpose of this paper is to propose a design technique for 
improving the resistance of the Quasi Delay Insensitive (QDI) Asynchronous 
logic against Differential Power Analysis Attacks. This countermeasure 
exploits the properties of the QDI circuit acknowledgement signals to 
introduce temporal variations so as to randomly desynchronize the data 

resistance, is formally presented and analyzed. Electrical simulations 
performed on a DES crypto-processor confirm the relevancy of the approach, 
showing a drastic reduction of the DPA peaks, thus increasing the complexity 
of a DPA attack on QDI asynchronous circuits. 

1 Introduction and motivations  

Nowadays, the possibilities offered by all recent powerful side-channel attacks to 
access to confidential information, constrain secure systems providers to develop 
new resistant systems against these attacks. Among these new hardware 
cryptanalysis attacks, there is the Differential Power Analysis (DPA) which is one of 

exists a correlation between data processed by the design and the observable power 

It is in this context that the properties of Self-timed logic have been exploited in 
order to propose efficient counter-measures against DPA attacks [2][3].  

Insensitive asynchronous logic demonstrated the potentiality of this type of logic to 
increase the chip’s resistance [4][5].   

 
 

the most powerful and low cost attack.  The main idea behind DPA is that there 

exploited using statistical means to retrace secret key information.  

All results from the analysis of Self-timed logic particularly the Quasi Delay 

Springer), pp. 11–24. 

Improving DPA Resistance of Quasi Delay 

processing times. The efficiency of the countermeasure, in terms of DPA 

shifted Acknowledgment Signals  

TIMA Laboratory, Concurent Integrated Systems Group 

Bouesse, F., Renaudin, M., Sicard, G., 2007, in IFIP International Federation for Information Processing, 
Volume 240, VLSI-SoC: From Systems to Silicon, eds. Reis, R., Osseiran, A., Pfleiderer, H-J., (Boston: 

consumption. In 1998 Paul Kocher [1] demonstrated how this correlation can be 

Insensitive Circuits Using Randomly Time-



 
However, paper [6] reported that, even if the QDI asynchronous logic increases 

the resistance of the chip, there still exists some residual sources of leakage that can 
be used to succeed the attack.  

The objective of this paper is to make a DPA attack impossible or impracticable 
with standard equipment by increasing the complexity of the attack. For doing so, we 
introduce randomly time shifted (RTS) acknowledgment signals in the QDI 
asynchronous logic in order to add noise in chip’s power consumption. Indeed, the 
use of a RTS acknowledgement signal in an asynchronous Quasi Delay Insensitive 
block enables us to desynchronize the data processing time, so as to compute the 
blocks’ output channels at random times. As the DPA attack requires the signals to 
be synchronized with respect to a fixed time instant for data analysis [1][7], this 
desynchronization makes the DPA attack more difficult as it is proved in this paper. 

We present in the first part of the paper (section 2), the properties of Quasi Delay 
Insensitive asynchronous logic, especially the properties of the acknowledgment 
signal. Section 3 first introduces the formal analysis of the DPA attack. It then 
presents the desynchronization technique based on RTS acknowledgement signals 
and formalizes its efficiency in terms of DPA resistance. Finally, sections 4 and 5 
illustrate the technique using electrical simulations performed on the well known 
Data Encryption Standard (DES) architecture. Section 6 concludes the paper and 
gives some prospects.   

2 Quasi Delay Insensitive Asynchronous logic: the 
acknowledgment signal 

This section recalls the basic characteristics of an asynchronous circuit, 
particularly the rule of the acknowledgement signal in the QDI asynchronous logic. 

Because this type of circuit does not have a global signal which samples the data 
at the same time, asynchronous circuits require a special protocol to perform a 
communication between its modules. The behavior of an asynchronous circuit is 
similar to a data-flow model. The asynchronous module, as described in figure 1 and 
which can actually be of any complexity, receives data from its input channels 
(request signal), processes them, and then sends the results through its output 
channels. Therefore, a module is activated when it senses the presence of incoming 
data. This point-to-point communication is realized with a protocol implemented in 
the module itself. Such protocols necessitate a bi-directional signaling between both 
modules (request and acknowledgement): it is called handshaking protocols.  
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Fig. 1. Handshake based communication between modules. 

The basis of the sequencing rules of asynchronous circuits lies in the 
handshaking protocols. Among the two mains classes of protocols, only the four-
phase protocol is considered and described in this work. It is the most widely used 
and efficiently implemented in CMOS [8]. 
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Data
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Invalid    Data Valid    Data
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Fig. 2. Four-phase handshaking protocol. 

In the first phase (Phase 1) data are detected by the receiver when their values 
change from invalid to valid states. Then follows the second phase where the 
receiver sets to one the acknowledgement signal. The sender invalidates all data in 
the third phase. Finally the receiver resets the acknowledgment signal which 
completes the return to zero phase. 

Dedicated logic and special encoding are necessary for sensing data 
validity/invalidity and for generating the acknowledgement signal. Request for 
computation corresponds to data detection and the reset of the acknowledgment 
signal means that the computation is completed and the communication is finished.  

In QDI asynchronous logic, if one bit has to be transferred through a channel 
with a four-phase protocol, two wires are needed to encode its different values. This 
is called dual-rail encoding (table 1).  
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Table 1. Dual rail encoding of the three states required to communicate 1 bit.  

Channel data A0 A1 

0 1 0 

1 0 1 

Invalid 0 0 

Unused 1 1 

 
This encoding can be extended to N-rail (1-to-N).  
The acknowledgement signal is generated using the data-encoding. The dual-rail 

encoded outputs are sensed with Nor gates for generating the acknowledgment 
signal, as illustrated in figure 3. 
 

AO

A1

Asynchronous

Module 

A

Asynchronous

Module 

B

Cr

Cr

OR

Cr

Cr

OR

B1

B0 S0

S1E1

E0

E_ack B_ack

Cr

Cr

OR

Cr

Cr

OR
S_ack

AO

A1

Asynchronous

Module 

A

Asynchronous

Module 

B

Cr

Cr

OR

Cr

Cr

OR

Cr

Cr

OR

Cr

Cr

NOR

B1

B0 S0

S1E1

E0

E_ack B_ack

Cr

Cr

OR

Cr

Cr

OR

Cr

Cr

OR

Cr

Cr

NOR
S_ack

AO

A1

Asynchronous

Module 

A

Asynchronous

Module 

B

Cr

Cr

OR

Cr

Cr

OR

B1

B0 S0

S1E1

E0

E_ack B_ack

Cr

Cr

OR

Cr

Cr

OR
S_ack

AO

A1

Asynchronous

Module 

A

Asynchronous

Module 

B

Cr

Cr

OR

Cr

Cr

OR

Cr

Cr

AO

A1

Asynchronous

Module 

A

Asynchronous

Module 

B

Cr

Cr

OR

Cr

Cr

OR

B1

B0 S0

S1E1

E0

E_ack B_ack

Cr

Cr

OR

Cr

Cr

OR
S_ack

AO

A1

Asynchronous

Module 

A

Asynchronous

Module 

B

Cr

Cr

OR

Cr

Cr

OR

Cr

Cr

OR

Cr

Cr

NOR

B1

B0 S0

S1E1

E0

E_ack B_ack

Cr

Cr

OR

Cr

Cr

OR

Cr

Cr

OR

Cr

Cr

NOR
S_ack

 
 

Fig. 3. 1-bit Half-buffer implementing  a four-phase protocol  
(Cr is a Muller gate with a reset signal) 

The Muller C-element’s truth table and symbol are given in Figure 4. 
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Fig. 4. Truth table and symbol of the C-element.  

Figure 3 illustrates the implementation of two asynchronous modules (A and B) 
with their memory elements called half-buffer. The half-buffer implements a four-
phase protocol. When the acknowledgement signal of module B (B_ack) is set, it 
means that the module is ready to receive data. If a data is transferred from module A 
to module B, module B computes its outputs and resets its acknowledgement signal 
(B_ack). Module B is then ready to receive invalid data from module A.  
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   In this operating mode, the acknowledgment signal can be considered as a local 
enable signal which controls data storage locally. Note that this mechanism does not 
need any timing assumption to ensure functional correctness; it is simply sensitive to 
events. Hence, the acknowledgment signal enables to control the activation of the 
computation in a given module, as well as its time instant. 

The technique proposed in this paper, exploits this property by inserting random 
delays in the acknowledgement signals. It is called Randomly Time-Shifted 
acknowledgment signals. It basically desynchronizes the power consumption curves 
making the differential power analysis more difficult as proved in the next section. 

 

3 DPA and RTS acknowledgment signal on QDI asynchronous 
circuits: Formal Approach 

In this section, we formally introduce the basis of the DPA attack [7] and 
formally analyse the effects of the RTS acknowledgement signal on QDI 
asynchronous circuits in terms of DPA resistance. 

3.1 Differential Power Analysis Attack 

The functional hypothesis of DPA attack is the existing correlation between the 
data processed by the circuitry and its power consumption. There are three main 
phases for processing the DPA attack: the choice of the selection function D, the data 
collection phase and the data analysis phase.  

Phase 1: In the first step, the selection function is defined by finding blocks in 
the architecture which depend on some parts of the key. Such a function in the 
DES algorithm for example can be defined as follows: 
 

D(C1,P6,K0)= SBOX1(P6⊕K0) 
C1 = first bit of SBOX1 function. 

P6 = 6-bit plain-text-input of the SBOX1 function. 
K0 = 6-bit of the first round’s subkey: key to guess. 

SBOX1 = a substitution function of DES with a 4-bit output. 
 
Phase 2: The second step consists in collecting the discrete time power signal 
Si(tj) and the corresponding ciphertext outputs (CTOi) for each of the N plaintext 
inputs (PTIi). The power signal Si(tj) represents the power consumption of the 
selection function: index i corresponds to the PTIi plaintext stimulus and time tj 
corresponds to the time where the analysis takes place. 
Phase 3: The right key is guessed in the third phase. All current signals Si(tj) are 
split into two sets according to a selection function D. 
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Where |no| and |n1| represent the number of power signals Si(tj) respectively in set 
S0 and S1. The DPA bias signal is obtained by: 
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If the DPA bias signal shows important peaks, it means that there is a strong 
correlation between the D function and the power signal, and so the guessed key 
is correct. If not, the guessed key is incorrect.  
Selecting an appropriate D function is then essential in order to guess a good 
secret key.  
 
As illustrated above, the selection function D computes at time tj during the 

ciphering (or deciphering) process, the value of the attacked bit. When this value is 
manipulated at time tj, there will be at this time, a difference on the amount of 
dissipated power according to the bit’s value (either one or zero).  

Let’s define d0i(tj) the amount of dissipated power when the attacked bit switches 
to 0 at time tj by processing the plaintext input i and define d1i(tj) the  amount of 
dissipated power when this bit switches to 1.  

In reality, the values of d0i(tj) and d1i(tj) correspond to the dissipated power of all 
data-paths which contribute to the switching activity of the attacked bit. Each one of 
these values has its weight in each average power signal A0(tj) and A1(tj). As the goal 
of the DPA attack is to compute the difference between these two values, we can 
express the average power signal of these both sets A0(tj) and A1(tj) by: 
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In order to make an efficient analysis, the amplitude of the DPA signature ε(tj) 

must be as high as possible.  
A simple way to guarantee this is to use a significant number of plaintext inputs 

(N). Indeed, the number of PTIi (the number of power signal Si(tj)) used to 
implement the attack enables to reduce the effects of the noisy signals and to 
increase the probability of  exciting all data-paths.  

 
• It is well known that the signal-to-noise ratio for the averaged signal 

increases as the square root of the number of curves. 
 

noise

signalS
NSNR
!

=  

 
  σnoise is the standard deviation of the noise  
 
• Increasing the number of plaintext inputs (PTIi) allows us to ensure that all 

data-paths which make switching to 0 or to 1 the attacked bit are excited. 
The deal here, is to take into consideration all possible quantities dxi(tj) 
which represent the switching current of the attacked bit. As the probability 
of exciting all data-paths is proportional to N, bigger the value of N, better 
the probability to excite all data-paths of the attacked bit is: 

 

m
N

P =)(!  

 
m is generally unknown by the hacker and represents the number of data-
paths. 

 
Therefore, the knowledge of the implementation which enables to choose the 

plaintext inputs and the use of high quality instrumentation are assets that improve 
the DPA attack. In fact, they considerably reduce the number of data (N) required for 
succeeding the attack. 

3.2 The RTS acknowledgement signal 

The method we propose in this paper enables the designer to introduce a 
temporal noise in the design in order to desynchronize the time required for 
processing the attacked bit. The idea of the approach is to randomly shift in time the 
current profile of the design. To achieve this goal, we randomize the 
acknowledgment signal latency of the blocks of the architecture. As illustrated in 
figure 5, we use a delay element controlled by a random number generator. The 
design of the random number generator is out of the scope of this paper. True 

(5) 
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Therefore, the DPA signature is expressed by: 
 



random number generator (TRNG) design is an important topic and many different 
types of TRNG implementation exist [9][10]. 
 

Asynchronous 

Module 

A A
ck

no
w

le
dg

m
en

t

Asynchronous 

Module 

B

Delay Block 

Random Generator 

A
ck

no
w

le
dg

m
en

t

Asynchronous 

Module 

A A
ck

no
w

le
dg

m
en

t

Asynchronous 

Module 

B

Delay Block 

Random Generator 

A
ck

no
w

le
dg

m
en

t
 

 
Fig. 5. Implementation of a random acknowledgment signal   

 
Let’s denote n the number of possible random delays implemented in a given 

architecture. n depends on the number of available acknowledgment signals (m) in 
the architecture and on the number of delays (ki) implemented per acknowledgment 
signal. The “n” value is computed by the following expression: 
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assuming cascaded modules. 
If the acknowledgment signal is randomized n times, it means that the value of 

the attacked bit is computed at n different times (tj ). N/n represents the number of 
times the attacked bit is processed at a given time tj and N/2n represents the number 
of times the quantities d0i(tj ) and d1i(tj ) of this bit contribute to set S0 and S1 
respectively. If we consider that the N curves are equally split in both sets 
(n0=n1=N/2), the average power signal of each set is now expressed by: 
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The DPA bias signal is then given by the following expression: 
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These expressions show that, instead of having a single quantity εx(tj), we have n 

different significant quantities εx(tn) which correspond to n times where the attacked 
bit is processed. Moreover, it also demonstrates that each quantity εx(tj) is divided by 
a factor n as illustrated by the following simplification:  

 

( )
n

td
tdtd

n
t jxj

jxnjxj
x

jx

)(
)(...)(

1
)( !++="  

with   )(...)( jxnjxj tdtd !!  

 
It means that, although the number of significant points is increased by n, this 

approach divides by n the average current peaks variations. It offers the possibility to 
bring down the level of DPA bias signal closer to circuitry’s noise.  

3.2 Discussion  

Let’s for example implement the DPA attack using 1000 plaintext inputs 
(N=1000). In the standard approach where the attacked bit is processed at a unique 
given time, we obtain an average of 500 current curves for each of the sets S0 and S1. 

Using our approach with RTS acknowledgment signals and assuming n=16 (for 
example), we obtain 16 different points (in terms of time) where the attacked bit is 
processed. There are 62 values dxi(tj) (N/n curves) where this bit is processed at time 
(tj ). Each set then contains 31 curves. When the average power signal of each set is 
calculated, values dxi(tj ) are 16 times lower than without RTS acknowledgment 
signals. Hence, the contribution of dxi(tj ) in current peaks variations are reduced by a 
factor 16.  

Therefore, to succeed the attack the hacker is obliged to significantly increase the 
number of acquisitions (N) or to apply a cross-correlation function which is exactly 
the goal to achieve in terms of attack’s complexity. In fact, cross-correlation remains 
a useful method for synchronizing data. But to be functional, the hacker must 
identify the amount of current profile of the attacked bit (dxi(tj )) to be used as a 
reference, and then compute cross-correlations in order to synchronize each of the N 
curves with the reference. Knowing that, the cross-correlation is applied on 
instantaneous current curves which contain significant quantity of noise. 

To increase the difficulty of this analysis, the value of n can be significantly 
increased by dealing with the values of m and k. 

• The value of m depends on the architecture. Its value can be increased by 
expanding the acknowledgment signals of the architecture. Each bit or 
intermediate value of the design can be separately acknowledged. This technique 
enables also to reduce the data-path latency.  

(7) 

(8) 
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• The values of the delay depend on the time specification to cipher/decipher data. 
They are bounded by the maximum ciphering/deciphering time. 

Consequently, the acknowledgement signals of any asynchronous quasi delay 
insensitive circuit can be exploited to introduce random delays and therefore increase 
the DPA resistance of the chips. 

4 Case Study: DES Crypto-processor  

This section deals with the different possibilities of implementing RTS 
acknowledgment signals on QDI asynchronous circuits. The DES was chosen as an 
evaluation vector because the attack on this algorithm is well known.  

Figure 6 represents the DES core architecture, implementing a four-phase 
handshake protocol, using 1-to-N encoded data and balanced data-paths [2]. The 
architecture is composed of three iterative asynchronous loops synchronized through 
communicating channels. One loop for the ciphering data-path, the second for the 
key data-path and the last one for the control data-path which enables the control of 
the sixteen iterations of the algorithm.  

For example let’s apply the technique to the five grey blocks of figure 6. Each 
block has its own acknowledgement signal and the delay inserted in each 
acknowledgment signal can take four values. Therefore, there are 1024 possible 
delay values (n=1024). It means that (in terms of DPA resistance) the current peak 
variations corresponding to dxi(tj) will be divided by 1024. 

Fig. 6. Asynchronous DES core architecture  
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5 Results and Analysis: Electrical simulations  

Electrical simulations enable us to analyze the electrical behaviour of the design 
with high accuracy, i.e. without disturbing signal (noise). All electrical simulations 
are performed with Nanosim using the HCMOS9 design kit (0.13!m) from 
STMicroelectronics. 

The architecture used for these electrical analysis implements one 
acknowledgement signal per block. However, for the needs of illustration only the 
acknowledgment signal of the inputs of the SBOX1 is randomly delayed with 8 
different delays. The defined selection function, used to implement the attack, is as 
follows:  

 
D(Cn,P6,K0)= SBOX1(P6⊕K0) 

with n ∈ {1,2,3,4} 
 
The DPA attack has been implemented on the four output bits of the SBOX1 and 

on the first iteration of the DES algorithm using 64 plaintext inputs (N=64). Figure 7 
shows the current profile of the first iteration when the RTS acknowledgment signal 
is activated and deactivated. When the delay of 13ns is used, the time required for 
processing an iteration (figure 7-b) corresponds to the time required to process 3 
iterations without delays (figure 7-a). Hence the ciphering time is multiplied by a 
factor 3. This delay is chosen for the sake of illustration only. Given a level of DPA 
resistance, the delay can be strongly decreased in practice (down to a few 
nanoseconds with this technology) to reduce as much as possible the timing 
overhead as well as the hardware overhead caused by the application of the 
technique 

Fig. 7. Current profile of the DES QDI asynchronous architecture. 
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Only the first iterations are considered 

b- with a correct guessed key 

Fig. 8. Electrical signatures when performed DPA attack on bit 4 of the SBOX1.  
Only the first round is considered and computed using more than 2.100.000 point. 

As the SBOX1 has four output bits encoded in dual-rail, we have 8 data-paths 
(from outputs to inputs) which enable to compute 8 values of dxi(tj). Let’s recall that, 
dxi(tj)(d0i(tj);d1i(tj))  corresponds to the amount of dissipated power when the attacked 
bit is processed at time tj . For example, let’s consider the output bit 4 of the SBOX1.  

Contrary to a standard approach and due to the 8 delay shifts, the values d04(tj) 
and d14(tj) are processed 4 times instead of being processed 32 times, so that their 
weights are reduced by a factor 8 into sets S1  and S0. Each of this set enables us to 
calculate the average currents Α0(tj) and Α1(tj).  
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   Figure 8 shows these average current profiles (A0(tj) and A1(tj)) which are used to 
compute the DPA bias signal (S(tj)), also shown in figure 8. 

Part I of these curves represent the first encryption operations in the first iteration 
(see figure 8). This part is not affected by the RTS acknowledgment signal which is 
only applied on SBOX1. In fact, before computing the SBOX function, the chip first 
computes IP, Expansion and Xor48 functions (figure 6), so that, in the first iteration, 
these functions, are not affected by the RTS acknowledgement signal of SBOX1. 
This explains why the amplitude of the average power curve starts decreasing after 
part I and it clearly illustrates the effect of the RTS signal on the power curves. This 
can of course be changed by activating the RTS acknowledgement signals of blocks 
IP, Expansion and/or Xor48.  

In the considered example, 64 PTIi curves are used to implement the attack. In 
this case, obtaining the key bit from the DPA bias signal is impossible as shown in 
figure 8. Indeed, there is no relevant peak in the DPA current curves (figure 8-a and 
8-b). 

6 Conclusion  

This paper presented a countermeasure against DPA based on randomly time-
shifted acknowledgment signals of asynchronous QDI circuits. The efficiency of the 
countermeasure was first theoretically formalized and then demonstrated using 
electrical simulations. The technique principle was illustrated on a DES architecture.  

generator.   
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Abstract. This paper presents performance comparisons between two 
multipliers architectures. The first architecture consists of a pure array 
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1 Introduction 

Multiplier modules are common to many DSP applications. The fastest types of 
multipliers are parallel multipliers. Among these, the Wallace multiplier [18] is 
among the fastest. However, they do not have such a regular structure as the 
conventional array [11] or Booth [13] multipliers. Hence, when layout regularity, 
high-performance and low power are primary concerns, Booth multipliers tend to be 
the primary choice [2], [7], [9], [13], [16]. 

In this paper, we present layout implementations for both the Modified Booth 
multiplier and the new array multiplier in non-pipelined and pipelined versions. The 
pipelined version of the radix-4 architecture was implemented in order to reduce 
both the critical path and useless signal transitions that are propagated through the 
array. This array architecture is extended for radix 2m encoding, which leads to a 
reduction of the number of partial lines, enabling a significant improvement in 
performance and power consumption. 

We synthesize the multipliers by using an automatic synthesis tool, named 
TROPIC [15]. In order to compare the Modified Booth and the array architectures, 
both using radix-4, the ELDO – a spice simulator, part of the Mentor Graphics 
environment, was used. The results show that the new array multiplier is 
significantly more efficient, saving more than 50% in power consumption. This 
result is very close to the results reported in [4], obtained at the logic level using a 
switch-level simulator and 16% power savings considering pipelined versions. 

The power reduction presented by the new array multiplier is mainly due to the 
lower logic depth, which has a big impact in the amount of glitching in the circuit. 
We should stress further that, in contrast to the architecture presented in [4], rasing 
the radix for the Booth architecture is a difficult task, thus not being able to leverage 
from the potential savings of higher radices. 

This paper is organized as follows. In the next section we give an overview of 
relevant work related to our work. In section 3 we present a 2’s complement binary 
multiplication. After that, Section 4 briefly describes the radix-4 array multiplier. 
The Modified Booth multiplier and their pipelined forms are described in Section 5. 
Section 6 describes the design methodology and how area, power and delay results 
are obtained. Comparisons between the radix-4 array multiplier architecture and the 
Modified Booth, for both switch level and electrical level are presented in Section 7. 
Finally, in Section 9 we conclude this paper, discussing the main contributions and 
future work. 

2 Related Work 

A substantial amount of research work has been put into developing efficient 
architectures for multipliers given their widespread use and complexity. Schemes 
such a bisection, Baugh Wooley and Hwang [9] propose the implementation of a 2’s 
complement architecture, using repetitive modules with uniform interconnection 
patterns. However, an efficient VLSI realization is more difficult due to the irregular 
tree-array form used. The same non-regularity aspect is observed in [13], where a 
scheme of a multiplexer–based multiplier is presented. In [11] an improvement of 
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this technique is observed where the architecture has a more rectangular layout than 
[13]. 

The techniques described above have been applied to conventional array 
multipliers whose operation is performed bit by bit and some times the regularity of 
the multipliers is not preserved. More regular and suitable multiplier designs based 
on the Booth recoding technique have been proposed [7][2][16]. The main purpose 
of these designs is to increase the performance of the circuit by the reduction of the 
number of partial products. In the Modified Booth algorithm approximately half of 
the partial products that need added is used. 

Although the Booth algorithm provides simplicity, it is sometimes difficult to 
design higher radices due to the complexity to pre-compute an increasing number of 
multiples of the multiplicand within the multiplier unit. In [7][16] high performance 
multipliers based on higher radices are proposed. However, these circuits have little 
regularity and no power savings are reported. Research work that directly targets 
power reduction by using higher radices for the Booth algorithm is presented in 
[2][10]. Area and power improvements are reported with a highly optimized 
encoding scheme ate the circuit level. At this level of abstraction some other works 
have applied complementary pass-transistor logic in their design in order to improve 
the Booth encoder and full adder circuits [9][13][14]. 

In our work, the improvement in power has the same principal source as the 
Booth architecture, the reduction of the partial product terms, while keeping the 
regularity of an array multiplier. We show that our architecture can be more naturally 
extended for higher radices using less logic levels and hence presenting much less 
spurious transitions. We present layout implementation of pipelined and non-
pipelined versions of our multipliers. 

3 Array Multipliers 

In this section we describe how we derive the 2’s complement binary 

multiplication. Consider two operands W-bits wide, !
"

=
=

1

0
2

W

i

i
iaA  and 

!
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=
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1
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j

j
jbB . We have that 
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jbABA                     (1) 

where in turn, 
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#=#
1

0

2
W

i

i
ijj abbA                     (2) 

A conventional array multiplier [3] translates this expression directly to 
hardware, where we have the W partial product rows from Equation 1, each made of 
W bit level products as in Equation 2, which can be arranged in a simply, very 
regular, array structure. Each bit product is simply an AND gate. 

The conventional array multiplier is only applicable to unsigned operands. We 
are able to show that exactly the same architecture can be used on signed operands in 
2’s complement with very little changes. 
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2’s complement is the most used encoding for signed operands. The most 

significant bit, 1!Wa , is the sign bit. If the number A is positive, its representation is 

the same as for an unsigned number, simply A. If the number is negative, it is 

represented as AW
!2 . 

Conversely, the value of the operand can be computed as follows: 
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2 ,

,
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                (3) 

We make the following observation that enables us simplify our architecture. Let 

us define !
"

=
=#

2

0
2

W

i

i
iaA , an unsigned value. For positive numbers, 01 =!Wa , 

hence the value represented by A is A! . For negative numbers, 11 =!Wa , hence this 

value is WWW AA 2)2(2 1
!"+=!

! = 12 !
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WA . Then equation 3 becomes: 
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or simply 1
12 !

!!"=
W

WaAA . 

What Equation 4 tell us is that the multiplication of two operands in 2’s 

complement can be performed as an unsigned multiplication for ( )21!W  of the bit 

products. Let us consider the 4 possible scenarios for BA! : 
 

:0,0 >> BA  BA !"!  

:0,0 <> BA  12 !"!"#"
WABA  

:0,0 >< BA  !
"

=

+""#$#
1

0

12
W

j

jW
jbBA             (5) 

:0,0 << BA  !
"

=

+"" "#"#$#
1

0

11 22
W

j

jW
j

W bABA  

which can be reduced to 
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The form of Equation 6 highlights: 
• from the first term, that the W-1 least significant bits A and B can be 

treated exactly as an unsigned array multiplier; 
• from the second term, that the last row of the multiplier is either non-

existent (B>0) or a subtracter of A!  shifted by W-1 bits (B<0); 
• from the third term, that, at each partial product line, the most 

significant bit is either 0 (A>0) or -1 (A<0). 

Consider now !
"

=

#
=$

2

0
2m

W

i

mi
iaA , where ia  is a m-bit digit. For positive 

numbers, the value represented by A is A! as before. For negative numbers, this 

28 Leonardo L. de Oliveira et al.



value is mWWmWW
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or simply 
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!!!"= 2
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Using analogous observations as made for the binary case, from Equation 8 we 
can write: 
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4 Radix-2m Array Multiplier 

In this section, we summarize the methodology of [5] for the generation of 
regular structures for arithmetic operators using signed radix-2m representation and 
extend it into a pipelined version [6]. 

For the operation of a radix-2m multiplication, the operands are split into groups 
of m bits. Each of these groups can be seen as representing a digit in a radix-2m. 
Hence, the radix-2m multiplier architecture follows the basic multiplication operation 
of numbers represented in radix-2m. The radix-2m operation in 2’s complement 
representation is given by Equation 10. 
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where R and Y are two operands W-bits wide; 1!Wr is the most significant bit (is the 

sign bit); and iW

i irR 2
2

0!
"

=
=# . 

This operation is illustrated in Fig. 1. For the W-m least significant bits of the 
operands unsigned multiplication can be used. The partial product modules at the left 
and bottom of the array need to be different to handle the sign of the operands. 

For this architecture, three types of modules are needed, as shown in Fig. 2. Type 
I are the unsigned modules. Type II modules handle the m-bit partial product of an 
unsigned value with a 2’s complement value. Finally, Type III are modules that 
operate on two signed values. Only one Type III module is required for any type of 

multiplier, whereas 2 m
W  - 2 Type II modules and ( m

W  - 1)2 Type I modules are 

needed. Fig. 6 shows an example of an 8-bit wide 2’s pipelined complement radix-4 
array multiplier. 
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Fig. 1. Example of a 2’s complement 8-bit wide radix-4 multiplication 
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Fig. 2. General structure for a 2’s complement radix-2m multiplier 

 
We present a summarized example for W=8 bit wide operands using radix-4 

(m=2) in Fig. 3. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. 8-bit wide 2’s complement Binary array multiplier m=2 
 
Figure 4 and Figure 5 show the structure of operands 1 and 2, their inputs and 

outputs and nearest connections between them and the blocks of adders. In additional 
they show the sign extension that has been used in operands 1 and 2. 
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Fig. 4. Operand 1 and connections to first line of adders showing the sign extension 
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Fig. 5. Operand 2 and connections to third line of adders showing the sign extension 

4.1 Pipelined Array Multiplier 

Glitches are unwanted switching activities that occur before a signal settles to its 
intended value. Each clock edge changes the inputs to the combinatorial logic 
between registers and every node has a different delay from different inputs, which 
change their state several times before settling down. Glitches on a node are 
dependent on the logic depth to that node, i.e. the number of logic gates from the 
node to the primary inputs (or sequential elements). The deeper and wider the logic 
behind a node, the more it glitches. These glitches can be reduced by reducing the 
depth of logic levels 

The regularity of this array architecture makes it suitable for the application of 
other power reducing techniques. A pipelined version was constructed in order to 
reduce the critical path and useless signal transitions that are propagated through the 
array. The doted lines in Fig. 6 show the pipelined version of the radix-4 array 
multiplier for 8-bit operands. As can be observed, the advantage of the layered 
structure of the array was taken into account and two layers of registers were 
introduced. Thus, 3 clock cycles are necessary to perform the computation 
considering 8-bit architectures. 
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Fig. 6. Example of an 8-bit wide 2’s complement radix-4 array multiplier 

5 Modified Booth multiplier 

The radix-4 Booth’s algorithm (also called Modified Booth) has been presented 
in [5]. In this architecture it is possible to reduce the number of partial products by 
encoding the two’s complement multiplier. In the circuit the control signals (0, +Y, 
+2Y, -Y and -2Y) are generated from the multiplier operand Y for each 3-bit group, 
as shown in the example of Fig. 7, for an 8-bit wide operation. A multiplexer 
produces the partial product according to the encoded control signal. 

Common to both architectures is that, at each step of the algorithm, two bits are 
processed. However, the basic Booth cells are not simple adders as in the array 
multiplier, but must perform addition-subtraction-no operation and controlled left-
shift of the bits of the multiplicand. Fig. 8, shows an example of an 8-bit modified 
Booth architecture. 

5.1 Pipelined Modified Booth Multiplier 

A pipelined Modified Booth by introducing registers along the layers of the array 
was implemented in and it is presented in Fig. 8. As it can be observed in this figure, 
there are two layers of registers along the array as in the binary array multiplier with 
m=2. Again, 3 clock cycles are required to compute the final result in the 8-bit 
architecture and six cycles to the 16-bit one. Moreover, common to both 
architectures is that the registers are inserted at the output of the adders which are 
responsible for adding the partial product terms. However, in the Booth multiplier it 
is also necessary to introduce registers in the output of the encoders to perform the 
correct operation of each clock cycle as shown in Fig. 8. 
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Fig. 7. Example of an 8-bit multiplication with Modified Booth algorithm 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. 8-bit pipelined modified Booth architecture 

6 Design Methodology 

Fig. 9 shows the design flow used in the physical implementation of the 
multipliers. Two methodologies are presented: our methodology (black), and the 
methodology used in [7] and [8] with the SIS environment (gray). The multipliers 
were originally described in BLIF (Berkeley Logic Interchange Format). Thus, these 
BLIF files are used as input of the design flow, as can be observed in Fig. 9. 

MD   10110111  (-73) 
MR   01011010 (0)  (+90)  

101101110    (2*MD)  
001001001    ( -MD) 
010010010    ( -2*MD)  

010 

011 

101 

100 00000000 0    (PP) 
010010010  

00010010010     (shift)  
  001001001  

0000110110110     (shift)  
101101110  

111100010010110     (shift)  
110110111  

11110011001010110     (shift)  (-6570) 
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In [5] and [6], the performance of the multipliers was evaluated only in a logic 
level. The SIS [17] tool was used to synthesize and estimate area and delay of the 
multipliers while power consumption was estimated using the switch-level simulator 
SLS [8]. 
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Fig. 9. Design tools for synthesis and performance estimation 

 
In this work, the TROPIC tool was used for the physical synthesis of the 

implemented multipliers. This tool uses a spice like format (sim) as input and 
performs a library-free automatic layout generation of the circuit regarding the 
design rules of the target technology. TROPIC gives the total area occupied by the 
layout and the number of transistors of the synthesized circuits. Before the layout 
synthesis of the circuits, it is necessary to set the size of the transistors and the 
number of rows. This last parameter is useful to set the aspect ratio width/height.  

Since the TROPIC tool generates the widely used cif format, the resulting circuit 
layout can be visualized with Mentor Graphics IC Station tool. Fig. 10 shows the 
layout for the 8-bit array multiplier, which was generated automatically by TROPIC 
tool. Once the cif file is generated, an electrical extraction can be performed using 
the TROPIC tool. 

The extracted SPICE netlists were simulated using the ELDO electrical simulator 
in order to obtain power estimation at the back-annotated electrical level. This 
simulator is part of the Mentor Graphics environment for power estimation. The 
same set of input vectors used in [4] and [5] for power estimation was converted 
from SLS to SPICE format and then used for transient analysis. 

The timing analysis tool PrimeTime [12] was used to estimate the critical delay 
of the circuits. PrimeTime is able to perform both static and functional timing 
analysis. Static timing analysis (STA) is the standard approach used for delay 
estimation in the current designs complexity. The main issue of this approach is that 
logic information about the cells of the circuit is not considered during the critical 
delay search. At the same time that this issue makes the delay estimation faster, it 
can make STA suffers from the false path syndrome. In order to avoid this false path 
syndrome, the designer must report all timing exceptions of the circuit to the STA 
tool, and it can be a very hard task. 

Another way to avoid false paths during delay estimation is using functional 
timing analysis (FTA). FTA performs the critical delay search taking into account 
information about the logic cells of the circuit. So, paths that can not propagate a 
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transition are not considered and the critical delay will be the delay of the longest 
sensitizable path. Primetime uses the Exact Floating Mode sensitization criterion 
during the critical path search. This sensitization criterion considers both logic and 
timing information of the cells during the path sensitization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Layout of an 8-bit array multiplier generated automatically by TROPIC 

7 Performance Comparisons 

In this section, we present area, delay and power results for the 16-bit multipliers 
after layout generation. The circuits were implemented using HCMOS 0.25µm 
technology and the same transistor size (WP=5µm and WN=3µm). Area results were 
obtained using the TROPIC layout generation tool and are presented both in terms of 
total area and in terms of number of transistors. Power consumption was estimated 
through electrical simulation using  ELDO simulator and applying a random pattern 
signal with 100 input vectors. Power results are presented in terms of average power 
consumption. PrimeTime was used to perform static and functional timing analysis 
and both delay results are presented. We have not applied yet any transistor-level 
techniques which can further improve the efficiency of booth architectures. 

7.1 Pipelined and Non-Pipelined Results 

Table 1 presents area results for 16-bit radix-4 Booth and the new array 
multiplier proposed in [6], both implemented in layout level. 
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Table 1. Area results for 16-bit parallel multipliers 

 Parameter Array Booth Diff(%) 

Number of transistors 12484 10064 -19.4 
non-pipelined 

Total area (mm2) 0.2872 0.2172 -24.4 

Number of transistors 23014 21220 -7.8 
pipelined 

Total area (mm2) 0.4829 0.4608 -4.6 

 
As it can be observed in Table 1, the array multiplier presents the highest area 

and number of transistors. This occurs due to the fact that the partial product lines 
operate on group of m bits and the basic multiplier elements, which compose the 
modules for the product terms, are slightly more complex. The introduction of 
registers along the layers of the arrays increases the area of both architectures when 
compared to the non-pipelined architectures as shown in Table 1. Although the array 
multiplier presents the highest area value, this architecture can be slightly more 
efficient in terms of delay result as presented in Table 2. This is due to the lower 
logic depth presented by our proposed architecture. 

Table 2. Delay results for 16-bit parallel multipliers 

 Array Booth Diff (%) 

FTA 9.80ns 10.59ns +8.06 
pipelined 

STA 9.86ns 10.61ns +7.60 

FTA 17.75ns 18.97ns +6.87 
non- pipelined 

STA 18.26ns 19.59ns +7.28 

 
Fig. 1 and Fig. 8 show that while in the pipelined array multiplier the critical path 

is given by a m=2 multiplier module and 2 full adders, in the pipelined Modified 
Booth, the critical path includes the encoder, an operand circuit composed by a 
multiplexer and a full adder. These circuits produce a large number of 
interconnections and a longer delay per row. Thus, the array multiplier presents less 
delay values than the Modified Booth even in the pipelined version as shown in 
Table 2. 

As observed in [1], the major sources of power dissipation in multipliers are 
spurious transitions and logic races that flow through the circuit. Thus, the 
significantly less amount of spurious transitions in the new array multiplier justifies 
the gain in power when compared against the Booth multiplier as shown in Table 3. 
Moreover, the new array multiplier presents less logic depth due to the more 
balanced paths to the basic blocks that compose the array architecture. This 
contributes for improvement in power reduction because of the less generation of 
useless transitions. Our architecture is more efficient in reducing glitching and hence 
reducing power, as the results in Table 3 demonstrate. It is also apparent that our 6-
stage pipelining for the 16-bit multiplier is not optimum, as the power increase 
demonstrates for the pipelined version of both multiplier architectures. It is also 
apparent that our architecture is more power efficient for a smaller number of 
pipeline stages, when compared to the Modified Booth. All power results are for the 
same pipeline frequency (50MHz). 

36 Leonardo L. de Oliveira et al.



This occurs because in the pipelined approach glitching is reduced significantly. 
This reduction will have a greater impact in the case where the glitching was higher. 
However, the reduced logic depth and delay presented by our architecture still makes 
it significantly more efficient, as shown in Table 3. 

Table 3. Power dissipation for 16-bit parallel multipliers at Vdd=2.5V and freq=50MHz 

 Array (mW) Booth (mW) Diff (%) 

pipelined 14.76 17.12 +16.0 

non-pipelined 10.76 16.75 +55.7 

7.2 Comparison between Electrical and Logic Results 

Table 4 shows area, delay and power percentage changes between the pipelined 
and non-pipelined array and Modified Booth multipliers. The estimates at the logic 
level and after layout correlate well for power. Area estimates at the logic level is 
just the number of literals coming from logic synthesis (SIS environment). Delay at 
the logic level was also estimated in SIS environment by using mcnc library. The 
relative power estimations are fairly close as shown in Table 4. In the logic level 
power results were obtained by using a random pattern input signal with 10,000 
input vectors. The larger number of glitches generated in the Modified Booth makes 
this architecture more power consuming in both pipelined and non-pipelined version, 
which is captured with the SLS simulator. This validates the results reported in [5] 
and [6] at gate level design. 

Table 4. Comparison between parallel multipliers in electrical and logic simulations 

 pipelined non-pipelined 

Parameter Logic Level Electrical Level Logic Level Electrical Level 

Area (n. of transistors) -14.4% -7.8% -20.2% -19.4% 

Delay (ns) +15.2% +8.06% +1.1% +6.87% 

Power (mW) +18.7% +16.0% +54.0% +55.7% 

8 Conclusions 

We have described the layout implementation of a new array multiplier and 
Modified Booth multiplier both in pipelined and non-pipelined versions operating in 
2’s complement numbers using radix-2m encoding. We have presented results that 
show significant improvement in power consumption in the new pipelined and non-
pipelined array multiplier. We have compared the new array and Modified Booth 
multipliers simulated both at the logic and electrical levels. The results showed that 
the relative values at the two levels of abstraction are similar when we compare the 
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power consumption of the multipliers. As future work we hope to be able to 
prototype these architectures in order to experimentally validate these results. 
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Abstract. Dynamic reconfiguration is a promising approach for re-
source efficient utilization of microelectronic systems. Standard plat-
forms for partial dynamic reconfiguration are field-programmable gate
arrays (FPGAs). Multiple hardware tasks can share the same FPGA re-
sources over time, which increases the device utilization in comparison to
non-reconfigurable systems. Although, similar resource management is
already known in the area of operating systems, there is a requirement
to adapt these concepts to the special needs of dynamically reconfig-
urable systems. Additionally, there is a lack of underlying mechanisms,
e.g., to suspend hardware tasks and restart them at a different position
within the FPGA. In this article we introduce a mechanism for task
relocation that includes saving and restoring of state information of the
task. Based on this approach we address the problem of defragmen-
tation. We present defragmentation algorithms that minimize different
types of costs. With the help of a detailed simulation model and a
benchmark, we finally provide realistic simulation results and compare
the different algorithms.

1 Introduction

Field Programmable Gate Arrays (FPGAs) are reconfigurable architectures

on demand and can be removed after execution at run-time thus allowing the

FPGAs [1, 10], there is a lack of underlying mechanisms, e.g., to suspend hard-
ware tasks and restart them at another time or relocate them to another area of
the FPGA. In this paper we describe an approach to an efficient task relocation

eral approaches address the problem of placing tasks on partial reconfigurable

hardware resources, dynamically exchanging hardware tasks require a resource

available FPGAs have the feature of partial reconfiguration, which offers a high
flexibility. Arbitrary functions in form of a hardware task can be configured

(Boston: Springer), pp. 41–53. 

that enable the integration of complete systems on a single chip. Currently
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management and methods for placement and relocation of the tasks. While sev-

Processing, Volume 240, VLSI-SoC: From Systems to Silicon, eds. Reis, R., Osseiran, A., Pfleiderer, H-J., 

sharing of FPGA hardware resources over time. With the increasing amount of



at run-time. The necessary relocation mechanisms are mainly implemented in
hardware allowing to save and restore state information while relocating the
hardware task.

Recurrent allocation and de-allocation of various sized tasks cause the free
FPGA resources to split into small fragments over time. But for placing a hard-
ware task the FPGA resources need to be available contiguously in a single
block. In order to increase the utilization of the FPGA, tasks can be rearranged
at run-time by using the relocation mechanisms with the aim to cluster free re-
sources to larger blocks, thus enabling placement of larger hardware tasks. This
process is called defragmentation. In this paper we present defragmentation
algorithms with the objective to minimize different reconfiguration costs. The
defragmentation algorithms have been implemented in our simulation frame-
work SARA. Simulation results show that the defragmentation algorithm we
present here can be useful to increase the utilization of the FPGA.

2 Task Relocation

The basic requirement for all kinds of task reorganizations (including defrag-
mentation) on the FPGA fabric is a proper mechanism to stop and relocate a
running task. In almost all cases this means that not only the hardware struc-
tures of the task have to be relocated, but also the current state information
that are stored in registers and memory. In order to relocate a task, the current
state information have to be read, the new instance of the task has to be placed,
the state information have to be restored, and finally the old instance of the
task has to be erased. There are basically two approaches to read and restore
state information that are stored in registers and memory all over the FPGA
area of the task.

The Task Specific Access Structures approach realizes reading and restoring
by adding an extra read/write interface to all state registers which leads to extra
resource consumption and especially to extra design effort. Consequently, each
hardware task has to be redesigned to be used in a reconfigurable environment.
However, one advantage of this approach is the high data efficiency, as only
the raw state information are read. In [9] Ullmann et al. have presented an
implementation of this approach.

In contrast to that, the Configuration Port Access approach is based on the
bitstream readback facilities of the configuration port (in our case the Xilinx Se-
lectMAP/ICAP interface, see [11]) of the FPGA. This port offers the possibility
to read arbitrary columns of the configuration memory including the current
register values and the RAM contents. After or during reading the bitstream,
the state information have to be filtered out of the readback stream. Before con-
figuring the new instance the preset bits of the flip flops and the RAM content
are modified according to the previously extracted state information (see [8]).
As the Configuration Port Access approach uses the inherent access structures
of the configuration circuitry and the configuration port, no hardware struc-
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tures have to be added to the tasks itself. However, one disadvantage of this
approach is the low efficiency, as the portion of state information in the read
data can be less than 1%.

2.1 Our Relocation Approach

We have developed a relocation approach that is based on the Configuration
Port approach. As simply all register values are stored there is no need to know
anything about the internal structure or behavior of the task and no extra
design effort has to be spent. In contrast to existing implementations that are
based on the Configuration Port Access approach (e.g., by Simmler et al. in [8]),
our approach does not read all configuration data, but only those that include
state information and belong to the task to be suspended. Furthermore, the
actual state information extraction is not done after but during reading the
configuration data. These differences to other approaches significantly reduce
the amount of data to be read back, the data to be stored, and finally the
processing time.

Platform Information
The mechanism of task relocation basically depends on the underlying FPGA
architecture and on the degree of freedom during the task placement (2D-,
1D-placement or fixed task slots). We use the Xilinx Virtex FPGAs because
these are the only devices which combine system level complexity and partial
reconfiguration (in a column-wise manner). The internal configuration memory
of a Virtex FPGA stores the bitstream and can be visualized as a rectangular
array of bits. The bits are grouped into one bit wide vertical columns that extend
from the top of the device to the bottom. These so called frames are the atomic
unit of configuration and are addressed by the major address (MJA) and the
minor address (MNA). A detailed description can be found in [11]. The column-
wise reconfigurability of the Virtex FPGAs also inspired our reconfigurable
system approach [7]. All hardware tasks can be dynamically placed, relocated
and erased along a horizontal communication infrastructure (1D-placement).
The communication infrastructure is completely homogeneous, which makes
it possible to dynamically relocate hardware tasks along the horizontal bus
structure. This relocation process can be realized by bitstream manipulations
that change the column addresses (MJA) of individual hardware tasks during
the download process of the configuration bitstream (see Fig. 1, [7] and [5] for
further information).

Architecture Overview
The architecture of our context relocation approach can be seen in Figure 1.
There are four main function blocks and a database to perform a relocation
process. The main blocks are the Configuration Manager, the State Extrac-
tion Filter, the State Inclusion Filter and the REPLICA Filter. The first step
of a context relocation process is to stop the clock of the particular hardware
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Fig. 1. Relocation Approach Overview.

task or of all hardware tasks to prevent state changes during the read process
(e.g., by clock gating). Subsequently, the Configuration Manager initiates the
SelectMAP interface to read all frames that contain state information. The ad-
dresses of the frames are calculated on basis of the location information given
by a database entry of the task. The database stores the current location of each
task, the memory addresses of the partial bitstreams and finally the location of
all state registers. During the read process, all frames are continuously trans-
ferred to the State Extraction Filter, which determines the state value within
each frame. The task is now suspended, but not deallocated. That means, a
partial ”empty” bitstream has to be downloaded to completely erase the cir-
cuitry of the task. The restoring process starts with the State Inclusion Filter,
which inserts the register values of the database into the original partial bit-
stream of the hardware task. The resulting bitstream would still allocate the
task at its original location, but with the new initial register states. Therefore,
the REPLICA Filter relocates the hardware task from its original location to
the FPGA column that is determined by the New Column Location input. Fi-
nally, the new partial bitstream, which is relocated and includes the states, is
downloaded by the Configuration Manager. After resetting the hardware task,
all registers are set to the proper value and the task can start processing in
exactly the state it was interrupted before. In the following, the four blocks are
described in more details.

The Configuration Manager is connected to the SelectMAP configuration
interface to read and write configuration data. When writing a bitstream the
Configuration Manager reads 32-bit bitstream words from arbitrary memory
locations and converts them to 4× 8-bit bitstream words, which are passed to
the configuration interface. For performance reasons, this part is implemented
in hardware (see [5] for further details). When reading the state information, the
Configuration Manager selects only the frames that contain state information.
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Therefore, the Configuration Manager takes the column (Col), slice (Slice) and
flip flop (FF ) values of the database entries for each state bit and generates an
address of the frame that contains the current state value. The frame address
consists mainly of the major address (MJA) and the minor address (MNA).
Equation(1) and (2) show the necessary calculations (Chip Cols determines the
maximum CLB column number of the FPGA).

MJA = Chip Cols− Col · 2 + 2
(left chip half and Virtex only) (1)

MNA = Slice · (12 · FF − 43)− 6 · FF + 45
with Slice, FF ∈ {0, 1}
⇒ MNA ∈ {2, 8, 39, 45}

(2)

The MNA can have only four different values, which means all flip flop
states of one CLB column are stored in only 4 frames. This results in a heavy
reduction of the amount of data to be read, as a complete CLB column consist
of 48 frames. Consequently, it makes sense to implement tasks in as few CLB
columns as possible to ensure a reasonable amount of state information in each
frame that is read. The output of the Configuration Manager is finally a stream
of single frames that contain the state information of the hardware task.

The State Extraction Filter takes the readback stream of the Configuration
Manager, extracts the state values and updates the database entries. For ex-
tracting the state value, the filter determines the bit index within the readback
frames by using the following equation (see also [11]).

Bit idx = (18 · row) + 1 (3)

As a result, the bit index only depends on the CLB row of the appropriate flip
flop, which means that all flips flop values of the same column and the same
type (e.g. Slice=0, FF=1) are located within one frame.

The State Inclusion Filter performs the first step of the restoring process.
The filter takes the original partial bitstream of the hardware task and inserts
all database state values by manipulating the preset bit of the registers. Similar
to the state extraction process, the frame address and bit index of all state bits
have to be calculated. The computation of the MJA and the bit index are the
same as for the state extraction process (cf. (1) and (3)); solely the MNA values
are different. See [8] for further information.

The REPLICA Filter is capable of relocating tasks by manipulating the
partial bitstream of the task. Downloading the output stream of the State In-
clusion Filter would allocate the task at its original location (after initial place
and route). However, in most cases a new location has to be found according to
the current resource allocation. In order to perform the proper manipulations,
the REPLICA filter parses the bitstream and replaces the column addresses
(MJAs) within the bitstream. The relocation process can only be performed
horizontally. The necessary manipulation, including the update of the CRC
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(Cyclic Redundancy Check) values within the bitstream, is implemented in
hardware and does not cause any extra time overhead. The architecture and
the hardware implementation of the REPLICA filter as well as an example
application are published in [5].

2.2 Relocation Time Overhead

A key performance issue in a reconfigurable system approach is the time over-
head to place or relocate a hardware task. The relocation time in our hardware
implemented relocation approach consists of three times: the state capture time,
the de-allocation time, and finally the allocation time. The bitstream manipu-
lation processes of state inclusion and task relocation are assumed to be com-
pletely hidden in the task allocation time, which has already been shown for
the task relocation with the REPLICA filter in [5].

The total time for relocating a task depends on the number of utilized
CLB columns Ncols, the frame size NByte/Frame, and the SelectMAP frequency
fSelectMap. For each CLB column, which is to be relocated, 4 frames have to
be read for capturing the states of the flip-flops (see Eq. (2)). The first frame
of every new read access is always a pad frame, which does not contain any
significant data. Hence, in order to capture all states of a CLB column 2 · 4 = 8
frames have to be read and the total time for capturing the states of the flip
flops is:

Tcap =
8 ·Ncols ·NByte/Frame

fSelectMap
(4)

For the allocation of a task 48 frames per task column must be written (see [11]
for further details) and the allocation time of a task is:

Talloc =
48 ·Ncols ·NByte/Frame

fSelectMap
(5)

If the time for allocating and de-allocating a task is assumed to be the same
(Tdel = Talloc), the time for a complete task relocation can be approximated
by:

Treloc ≈ Tcap + Talloc + Tdel =
104 ·Ncols ·NByte/Frame

fSelectMap
(6)

Equation (6) assumes a de-allocation process for every task relocation, but as
described in Section 3, the de-allocation can be avoided if it is ensured that the
task area is overwritten anyway (e.g. during a defragmentation process).

In order to give an overview of realistic relocation times we have imple-
mented several designs on an XCV2000E device (see [6] for further details).
The frame length of this device is 196 bytes and the SelectMAP frequency is
50 MHz. The task size ranges from 1 (8-bit divider) to 36 (RISC-CPU) CLB
columns (30% of the device) and the overall relocation time ranges from 0.4 ms
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(1 CLB column) to 14.8 ms (36 CLB columns). For each task the time for cap-
turing the states is only 8.2% of the complete relocation time. This is because
the de-allocation and allocation time outweighs the state capturing process.

In the following section various run-time defragmentation algorithms are
discussed, that consider the underlying mechanisms and timing models as de-
scribed in this section. By using the approximation of the relocation times,
simulations of a run-time defragmentation can be performed under realistic
timing constraints.

3 Defragmentation Algorithms

In dynamic reconfigurable systems recurrent allocations and de-allocations of
various sized tasks cause a so called external fragmentation, i.e., the contigu-
ous regions of unused reconfigurable cells gradually become scattered in small
fragments all over the FPGA. An important criteria for the placement of a re-
quested hardware task is the largest contiguous region of unused reconfigurable
cells. Any hardware task larger than that region cannot be placed. A solution to
increase the size of the region is to apply run-time defragmentation, i.e., to re-
locate currently configured hardware tasks aiming to cluster the unused cells in
one contiguous region. In [3] Diessel et al. described the one-dimensional order-
preserving compaction used for defragmentation in 2D system approaches. The
idea of one-way one-dimensional order-preserving compaction is sliding the al-
located hardware tasks to be compacted in a single direction along a single
dimension while preserving their relative order. The concept of this algorithm
can be adapted to the 1D system approach described in [7] since hardware tasks
are inherently placed in a single dimension. Algorithm 1 is showing the principle
of one-way one-dimensional order-preserving compaction. Consider a set of al-
located hardware tasks M = {m1,m2, ...}. In the one-dimensional approach the
position x(m) of a hardware task m ∈ M can be fully described by the leftmost
cell column of the task. The width w(m) of a hardware task can be described
by the number of cell columns that are used by the task. The defragmentation
according to Algorithm 1 is performed within the so called defragmentation
area from column istart to column iend. Mdefrag is the set of hardware tasks
which are located within the defragmentation area (line 1). icur is the currently
selected column for the placement of the tasks and is initialized by the value
iend (line 2). Inside the loop (lines 3-8) the task m is selected, which is located
rightmost within the defragmentation area (line 4). The selected hardware task
m is relocated by sliding it rightmost within the defragmentation area (lines
5-6). After relocation, the hardware task m is removed from the set Mdefrag

(line 7) and the loop is repeated until all tasks are compacted at the right. As
a result of the defragmentation, a single region with unused reconfigurable cells
is located starting from position istart.

Although applying the defragmentation to the whole FPGA will result in
an optimal situation with no fragmentation, where all unused cells are located
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unused cell used cell area of module

10 155 10 155 10 155istart

defrag. area

(a) Before defragmentation (b) Selected defrag. area (c) After defragmentation

iend istart iend

Fig. 2. Example for a locally defragmentation using the 1D system approach.

in a single block, probably all hardware tasks need to be relocated, which will
cause a large reconfiguration overhead.

The defragmentation time is derived by the sum of the relocation times of
the hardware tasks that are located within the defragmentation area. According
to Section 2.2 the relocation time of a hardware task basically depends on the
SelectMAP frequency and the task size (number of cell columns). While the
SelectMAP frequency is given by the hardware architecture, the only parameter
that influences the time for defragmentation is the number of cell columns
to be relocated. In order to avoid a long defragmentation time with a large
reconfiguration overhead, it is therefore necessary to keep the number of cell
columns to be relocated as low as possible.

Whenever a requested hardware task cannot be placed due to fragmentation,
sometimes only a few tasks need to be relocated to allow a placement. Hence,
to reduce the reconfiguration overhead, the defragmentation can be performed
only locally by selecting a suitable defragmentation area. The selection of the
defragmentation area can be influenced by the following objectives:

Task Movements: If a requested hardware task m cannot be placed due to
fragmentation, one objective for the defragmentation can be to minimize the
number of hardware task movements. For this, we need to define the availability
vector:

b(i) =
{

0 if cell column i is used
1 if cell column i is unused (7)

Consider w(m) is the width of the requested hardware task m, then the bounds
of the defragmentation area can be found by solving the following optimization
problem:

Minimize |Mdefrag| subject to
iend∑

n=istart

b(n) = w(m).

Column Movements: Minimizing the hardware task movements as described
above does not necessarily lead to the least reconfiguration overhead, since the
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Input Set of allocated hardware tasks M = {m1, m2, ...}, position of the tasks x(m)
(origin:left), width of a task w(m), boundaries of the defragmentation area istart

and iend under the condition b(iend) = 1 and b(istart) = 1.
Output New positions x̃(m) of the tasks within the defragmentation area.

(1) Mdefrag ← {m | m ∈M ∧ istart ≤ x(m) ∧ x(m) + w(m) ≤ iend}
(2) icur ← iend

(3) while Mdefrag 6= {}
(4) select an m ∈Mdefrag with maximum x(m)
(5) icur ← icur − w(m)
(6) x̃(m)← icur + 1
(7) Mdefrag ←Mdefrag \m
(8) end while

Algorithm 1: 1D defragmentation.

hardware tasks in Mdefrag can be large and therefore cause a long reconfigu-
ration time. Another approach is to consider the required column movements
rather than the required hardware task movements. In this case, the bounds of
the defragmentation area can be found by solving a similar optimization prob-
lem:

Minimize iend − istart subject to
iend∑

n=istart

b(n) = w(m).

Cost: Apart from configuration aspects such as column or hardware task move-
ments mentioned above, the bounds of the defragmentation area can be derived
with respect to parameters like, e.g., priorities of the allocated hardware tasks,
or the expected remaining time of the allocated hardware tasks.

Let us assume the function p(m) ∈ [0, 1] describes the priority of the hard-
ware task m. If p(m) = 0 the hardware task m has the least priority and
if p(m) = 1 the hardware task m has the highest priority. In order to find
a defragmentation area with a low overall priority, the following optimization
problem must be solved:

Minimize
∑

m∈Mdefrag

p(m) subject to
iend∑

n=istart

b(n) = w(m).

Regardless of the chosen objective – by solving one of the described optimiza-
tion problems and moving all allocated hardware tasks within column istart and
column iend to the right as described by Algorithm 1, the requested hardware
task m can be placed at column istart.

An example of the defragmentation is shown in Figure 2. Consider a re-
quested hardware task m with the width w(m) = 4 and the reconfigurable
architecture is in a configuration as shown in Figure 2(a). In the current con-
figuration the placement of m is not possible although enough free configurable
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cells are available. Applying the defragmentation with respect to minimal col-
umn movements results in a defragmentation area as shown in Figure 2(b) with
istart = 7 and iend = 12. After defragmentation the allocated hardware task
within the defragmentation area is located rightmost, such that an unused re-
gion for placing the requested hardware task m is located at position istart = 7
as shown in Figure 2(c).

4 Simulation Results

The defragmentation algorithms specified in Section 3 have been implemented in
the Simulation Framework for Analyzing Reconfigurable Architectures (SARA).
SARA is a discrete event simulator introduced in [4], which enables a realistic
simulation of system approaches for partially reconfigurable architectures.

The allocation of a hardware task is performed under real world conditions,
i.e., the configuration is done by simulating a SelectMAP interface at a clock
frequency of 50 MHz. Only a single hardware task can be configured or re-
moved at a time. The hardware tasks used in the simulations are considered
to be implemented on an XCV2000E FPGA and are based on the synthesis
results mentioned in [6]. The hardware task size ranges from 1 CLB column (8-
bit divider) to 36 CLB columns (RISC-CPU). Each simulation has a length of
4 sec, while within this 4 sec randomly 200 hardware tasks are requested to be
placed on the FPGA. Hardware tasks that cannot be placed due to unavailable
FPGA resources will not be placed again later. Defragmentation is initiated,
whenever a hardware task cannot be placed due to unavailable contiguous un-
used CLBs, although the total number of unused CLBs is larger than the size of
the requested hardware task. The online placement of a hardware task is done

for the hardware tasks. However, for the discussed simulations we decided that
the execution times of the hardware tasks linearly depend on the size of the
hardware task (e.g. 8-bit divider: 4 ms, RISC-CPU: 115 ms). After execution
the hardware tasks are removed from the FPGA as soon as the configuration
device is available. In this work we consider defragmentation to be performed
as follows:

The relocation is realized as described in Section 2.1. At the beginning the
clocks of the hardware tasks that are located within the defragmentation area
(Mdefrag in Alg. 1) are stopped. Subsequently, the state information of the
hardware tasks are captured and stored by the configuration device. Then the

defragmentation algorithm presented in Section 3. During relocation the pre-
viously captured states are restored, so that no extra time for the state write-
back is necessary. After all hardware tasks are located at their new positions
the requested hardware task is placed. Finally, previously used CLB columns,
which still contain old configuration data, are erased by a corresponding empty
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by the Best-Fit algorithm [2]. It is possible to use arbitrary execution times

hardware tasks are relocated to the new positions, which are calculated by the



CLKconf 

[MHz]
No 

Defrag.
Complete 

Defrag.
Local 

Defrag.
No 

Defrag.
Complete 

Defrag.
Local 

Defrag.

10 24,88% 30,78% 26,89% 34,16% 36,01% 34,72%

25 32,63% 37,14% 35,95% 18,08% 19,40% 17,45%
50 34,25% 36,91% 37,08% 14,45% 13,54% 12,03%

100 34,91% 38,27% 38,25% 13,50% 8,70% 8,70%
(no) 37,85% 38,64% 38,64% 9,09% 7,25% 7,25%

Device Utilization (mean) Rejected Modules (mean)

bitstream. Now that the defragmentation is done, the clocks of the relocated
hardware tasks are started again.

We consider two different defragmentation algorithms. In the first defrag-
mentation algorithm a complete defragmentation is performed by considering
the whole FPGA area as the defragmentation area. The second defragmenta-
tion algorithm selects the defragmentation area with the objective of minimal
column movements to allow a placement of the requested hardware task. There-
fore, only a local defragmentation is performed.

The simulations have been performed with complete defragmentation, local
defragmentation and without defragmentation. For a comparison we considered
the metrics device utilization and rejected hardware tasks. The device utiliza-
tion υ = NexecCLBs/NCLBs is the number of CLBs of the currently executing
hardware tasks (NexecCLBs) compared to the total number of CLBs (NCLBs).
In the simulations we used a XCV2000E which has NCLBs = 80 · 120 = 9600.
The metric rejected hardware tasks ρ = Nreject/Nhardwaretasks is the number of
unplaceable hardware tasks (Nreject) divided by the total number of hardware
tasks in the simulation (Nhardwaretasks).

In the simulations we have varied the configuration device clock frequency in
order to change the ratio of the configuration times to the execution times of the
hardware tasks. The simulation results are shown in Table 1. At a configuration
clock speed of 10 MHz defragmentation has a negative effect on the percentage
of rejected hardware tasks. In all simulations approximately every third hard-
ware task cannot be placed. However, the simulation with no defragmentation
has the least number of rejected hardware tasks.

At a faster configuration clock speed of 25 MHz the local defragmentation
has the least number of rejected hardware tasks, while the complete defrag-
mentation results in the largest number of rejected hardware tasks. In this
simulation local defragmentation showed an improvement of the number of re-
jected hardware tasks compared to no defragmentation. At a configuration clock
speed of 100 MHz both defragmentation algorithms produced nearly the same
simulation results. Although the selected XCV2000E device does not support
that configuration clock speed, we intended to analyze the influence of short
configuration times compared to relatively long execution times of the hard-
ware tasks. In this simulation there is the largest improvement of the number
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of rejected hardware tasks compared to no defragmentation. By assuming that
no configuration time is needed and tasks can be configured in 0 sec still 9, 05%
of the tasks cannot be placed and with defragmentation still 7, 25% of the tasks
are rejected.

In most of the simulations the complete defragmentation leads to the largest
device utilization. One reason for this is that hardware tasks are suspended
longer due to the higher reconfiguration overhead of complete defragmenta-
tion. Therefore, they remain longer on the FPGA and cause a higher device
utilization. But this does not result in fewer hardware task rejections.

5 Conclusion

In this paper we have described our approach to run-time relocation. Hard-
ware tasks can be placed along a one-dimensional communication structure by
manipulating the partial bitstream during configuration of the hardware task.
When relocating a hardware task the internal state information is preserved
by a state extraction and state inclusion filter. To save the internal states no
extra hardware structure have to be added to a hardware task and there is no
need to have detailed knowledge about the internal structure or behavior of the
hardware task.

By using our hardware task relocation and context saving methods, run-time
defragmentation can be realized. We have described a defragmentation method
with the objective to minimize the reconfiguration time overhead. We have im-
plemented the defragmentation method in a simulation framework. Simulation
results have shown: If the configuration time of a task equals the execution time
of the task defragmentation is not beneficial. If the execution time of a task is
greater than the configuration time of the task, local defragmentation becomes
useful. In any simulation local defragmentation performed better compared to
complete defragmentation.
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in gates and wires (except for some particular wires). Such 
asynchronous circuits offer high robustness but do not perform well to 
automatically synthesize and optimize. This paper presents a new 
methodology to model and synthesize data path QDI circuits. The model used 
to represent circuits is based on Multi-valued Decision Diagrams and allows 
obtaining QDI circuits with two-input gates. Optimization is achieved by 
applying a technology mapping algorithm with a library of asynchronous 
standard cells called TAL. This work is a part of the back-end of our synthesis 
flow from high level language. Throughout the paper, a digit-slice radix 4 
ALU is used as an example to illustrate the methodology and show the results. 

1 Introduction 

Asynchronous circuits do not have a global signal to synchronize them. 
Synchronization between blocks is locally done. Those circuits show very interesting 

reusability, etc [1]. 

This work is part of the TAST [2, 3] (Tima Asynchronous Synthesis Tool) 

independently of delays in gates and wires, apart from the assumption that some 
forks are isochronic. This kind of asynchronous circuit is particularly robust. But 
robustness has a cost; these circuits usually have more transistors than the others, 
especially when standard cells are targeted. Many efforts are directed towards circuit 

TAST are quasi-delay insensitive (or QDI [4]). QDI circuits are functionally correct 

properties such as low power consumption, noise emission, security, robustness, 

Abstract. Quasi delay insensitive circuits are functionally independent of 
delays 

asynchronous tools similar to synchronous ones. 
Today, to adopt the asynchronous technology the industry needs powerful 

Folco, B., Brégier, V., Fesquet, L., Renaudin, M., 2007, in IFIP International Federation for Information 

project, aimed at developing and prototyping such tools. The synthesized circuits in 

Processing, Volume 240, VLSI-SoC: From Systems to Silicon, eds. Reis, R., Osseiran, A., Pfleiderer, H-J., 
(Boston: Springer), pp. 55–69. 



optimization and transistor reduction; one of the main difficulties is to preserve the 
property of quasi-delay insensitivity [5-9]. 

2 Contributions 

This paper presents a complete standard cells based design flow we have developed 
as illustrated in Fig. 1. Our method uses Multi-valued Decision Diagrams as a model 
of the circuit that can be optimized while preserving the QDI property. Firstly, the 
model is generated from a CHP description. Secondly, the model is optimized. A 
two-input gates circuit is synthesized from the model. Thirdly, a technology mapping 
algorithm produces the final circuit, using gates from a library of standard 
asynchronous cells called TAL (TIMA Asynchronous Library). 

 
Fig. 1. Asynchronous Design Flow 

This design flow includes a general technology mapping algorithm dedicated to 
QDI circuits. It enables to target any standard cells library, including or not 
asynchronous cells. The main objective of this work is to reduce the area of the 
asynchronous circuits. In fact, this is one of the main challenges for the 
asynchronous circuits to be adopted. Accordingly, the last part of the paper compares 
results obtained for our asynchronous circuits to its synchronous equivalent. 

3 Asynchronous Circuits 

3.1 Communication channels and handshake protocol 

In asynchronous circuits, a local mechanism is used to perform the synchronization 
called handshake protocol. It relies on two signals: request and acknowledgment. 
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When a block needs to transmit data to another, it sends a request signal along with 
the data, and holds them until it receives the acknowledgment. The request and 
acknowledgment signals may not be reset before the next communication, making 
two possible handshake protocols, well-known as two-phase and four-phase 
protocols. Asynchronous circuits considered in TAST implement the latter. Request, 
acknowledgment and data are linked together; therefore we consider them as a single 
entity called communication channel. 

3.2 Quasi Delay Insensitivity 

 
A circuit is said QDI (Quasi Delay Insensitive) when its correct operation does not 
depend on the delays of gates or wires, except for certain wires that form isochronic 
forks [10]. If a circuit is QDI, a transition on its input must cause a transition on its 

relationship [11]. 

3.3 Delay Insensitive Code 

data are available. To achieve this, the request is encoded with the data using a 1-of-
n code: n rails are used to implement n possible values, numbered 0 to n-1. When all 

and therefore forbidden. The code is said Delay Insensitive since it guarantees that 
the request signal is always synchronized with the data. 

3.4 The Muller gate 

Asynchronous circuits need a gate that synchronizes several signals. This gate is 
called Muller gate (or C-element): when all inputs are equal, the output takes their 
value; when inputs are different, the output holds its value. Its symbol is a circle. 

3.5 An example 

Throughout this article, we illustrate our method with the example presented in Fig. 
2. This example is a digit-slice radix 4 ALU: it computes the function Op between its 
operands A and B, using the carry Cin and Cout when needed (addition and 
subtraction). Radix 4 was chosen to demonstrate that the method is not limited to 
dual rail. The ALU can compute seven different operations (add, sub, and, or, xor, 
neg, not); therefore Op is encoded with a 1-of-7 code. 
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In QDI circuits, a mechanism must guarantee that when a channel emits a request, its 

The channel is said valid. Other codes, when several rails are ‘1’, are out of the code, 
When one of the rails is ‘1’, its number is the value of the data, and the request is ‘1’. 

input. Mutual exclusion plays a very important role to prove this causality 

the rails are ‘0’, there is no data and the request is ‘0’. The channel is said invalid. 

output. It is said that the transition on the output acknowledges the transition on the 
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B

S

Cout

Cin

MR[4]

MR[4]

MR[4]

MR[2]

MR[2]Op
MR[7]

 

The CHP code is given in Fig. 3. 

process alu_digit_slice 

port( op: in di MR[7], a: in di MR[4], 

  b: in di MR[4], cin: in di MR[2], 

  s: out di MR[4],cout: out di MR[2];) 

begin 

variable op: MR[7],a: MR[4],b: MR[4],c: MR[2]; 

*[ 

Op?op; 

@[ 

op = '0' => A?a, B?b;    --add 

 @[ a+b<3 => Cout!0, [Cin?c; S!a+b+c];  --K 

  a+b=3 => Cin?c; [Cout!c, S!(c=0?3:0)]; --P 

  a+b>3 => Cout!1, [Cin?c; S!(a+b+c-4)]; --G 

 op = '1' => A?a, B?b;    --sub 

 @[ b-a<3 => Cout!0, [Cin?c; S!b-a+c];  --K 

  b-a=3 => Cin?c; [Cout!c,S!(c=0?3:0)];  --P 

  b-a>3 => Cout!1, [Cin?c; S!(b-a+c-4)]; --G 

 op = '2' => A?a, B?b; S!a and b; --and 

 op = '3' => A?a, B?b; S!a or b; --or 

 op = '4' => A?a, B?b; S!a xor b;--xor 

 op = '5' => A?a; S!(not a+1); --neg 

 op = '6' => A?a; S!(not a);  --not 

]] 

end  

4 Circuit modeling using MDDs 

The first step of our method is to model the circuit with Multi-valued Decision 
Diagrams (MDDs). It is presented in this section. 
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Fig. 3. CHP code of the example. 
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Fig. 2. A digit-slice radix 4 ALU. 
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A MDD [12] is a generalized BDD (Binary Decision Diagram, [13]) structure. 
This structure is very interesting for QDI circuits synthesis because it exhibits the 
notion of mutual exclusion, which plays a valuable role in quasi delay insensitivity. 

4.1 Presentation of the Multi-valued Decision Diagrams 

A MDD is a rooted directed acyclic graph. Each non-terminal vertex is labeled by a 
multi-valued variable and has one out-going arc for each possible value of the 
variable. Each terminal vertex is labeled by a value. Fig. 4 presents an example of 
MDD. 

Each path of the MDD from its root to a terminal vertex maps to an input vector 
(a state of the input variables). The value of the terminal vertex specifies the value 
that the MDD has to take under this input vector. 

The above definition of MDDs does not specify what the label of a vertex can be. 
Obviously, it can be input ports of the circuit: the logical function that specifies the 
outputs depends on the inputs. 

A

B

C

0 1

0

0

0

1

1

1

S

 

We also want to be able to use internal variables in the circuit. To achieve this 
goal, we consider an internal variable as a MDD. Therefore, the label of a vertex can 
also be another MDD, which specifies an internal variable. 

4.2 Direct and acknowledgment MDDs 

A communication channel holds not only data, but also request and acknowledgment 
signals. The request signal is computed with the data, thanks to the 1-of-n DI code. 

However the acknowledgment signal of the input channels needs to be computed 
separately. Moreover, not all input channels are read at each computation level; the 
circuit must not acknowledge an input channel that has not been read. 

For each output channel, our model contains a MDD that specifies the logic 
function computed and is called a direct MDD. For each input channel, it contains 
one MDD, called an acknowledgment MDD. Acknowledgment signals are 
considered as 1-of-n DI code with n=1: an acknowledgment MDD has only one 
terminal, and specifies the conditions under which the channel must be 
acknowledged. Fig. 5 illustrates the MDDs of the example 3.4. 
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Fig. 4. A simple example of MDD. 
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Fig. 5. MDDs modeling the circuit specified in 2.4. 
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Fig. 6. Result of the factorization over Fig. 5. 



5 Basic gates synthesis from the MDDs 

There are several steps to synthesize a circuit using basic two-input gates. First, a 
factorization is done between the different MDDs to share the common parts. Then, a 
reduction is applied to decrease the number of vertices in each MDD. Finally, each 
node of each MDD is synthesized using two-input gates. 

5.1 Factorization 

The factorization algorithm extracts the common part of a set of MDDs as an internal 
MDD, as illustrated in Fig. 7. 

 To preserve the QDI property, the factorization algorithm must ensure that it 
extracts at least one node in each path of the MDD: otherwise, the extracted MDD 
could become valid but be ignored in the calculation of the circuit’s outputs, 
remaining unacknowledged and therefore violating the QDI property. To ensure this, 
the algorithm only extracts common parts that include the root vertex. Since we try 
all possible ordering of the variables, this restriction does not limit the efficiency of 
the algorithm. Fig. 6 shows the result of this algorithm when applied to the MDDs of 
Fig. 5. 

from A, B and C. 

5.2 Reduction 

This step is similar to the reduction of BDDs: it merges the identical vertices of the 
MDD, which decreases their number and thus the size of the circuit. Note that this is 
different from factorization: the reduction acts on the structure of one MDD, whereas 
the factorization acts on the logical functions represented by a set of MDDs, 
independently of their structure. 

5.3 Synthesis using basic two-input gates 

To synthesize the circuit modeled by composed MDDs, each MDD is synthesized as 
a block of the circuit. 

The algorithm is specified by the following rules: 

• Each arc in a MDD corresponds to a rail in the circuit. 
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Fig. 7. Before and after the factorization of a set of MDDs. E is the common part extracted 
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• Multiple arcs directed to the same vertex are grouped by an OR gate. 
• A non-terminal vertex is implemented as set of two-input Muller gates 

that synchronize each rail of its variable with the in-going arc. The 
Muller gates outputs are the out-going arcs of the vertex. 

• A terminal vertex with value i represents rail number i of the MDD. 
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Fig. 9 presents the synthesized circuit from the MDDs of Fig. 5.  

6 Technology mapping 

We first present a library of asynchronous standard cells we have developed and 
called TAL. Then, we give different results obtained by using this library in the 
design of the digit-slice radix 4 ALU, instead of the ST standard library. Finally we 
compare our asynchronous circuit to a synchronous equivalent circuit. 

6.1 TAL library 

The TAL library has been developed to design asynchronous circuits with the aim to 
reduce their area, consumption and increase their speed [14]. This library contains 
about 160 cells (representing 42 functionalities), and has been designed with the 
130nm technology of STMicroelectronics. The main functionalities of the library are 
useful asynchronous functions as Muller gate, Half-Buffers, Mutex and complex 
gates as Muller-Or, Muller-And, … 

To clarify what gains should be attributed to a dedicated asynchronous library, 
we can view in  

Table 1 the comparison, between basic cells of the TAL library and their 
standard cells equivalent, in terms of number of transistors and area. For example, 
the Muller gate presented in 3.4 is build with 9 transistors in the TAL library (for a 
Muller gate with 2 inputs). With standard cells we have to use an optimized AO222 
gate with a loop as described in Fig. 10, made of 14 transistors, to find the 
functionality of a Muller gate. 
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Fig. 8. Example of basic two-input gates synthesis of a MDD. 



Fig. 9. Basic two-input gates circuit synthesized from the MDDs of Fig. 5. 
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Table 1. Differences between TAL and Std cells implementations of basic functions. 

Function 

TAL Lib 

Nb of 
transistors/ 
Area ( m2) 

Std cells 

Nb of 
transistors/ 
Area ( m2) 

Gain (area) 

Muller 2 9 tr. / 14,12 14 tr. / 20,17 30 % 

Muller 4 13 tr. / 18,15 42 tr. / 60,51 70 % 

Half-Buffer 28 tr. / 40,34 44 tr. / 62,53 35 % 
 
The average gain in term of area for all the TAL library compared to the standard 

ST library is around 35%. 

6.2 Technology mapping algorithms 

The main difficulty before mapping a library on asynchronous circuits is to 
decompose them and ensure to keep their property of quasi delay insensitivity. 

For example, it’s difficult to decompose a Muller gate with 3 inputs in 2 Muller 
gates with 2 inputs without introducing a hazard. This decomposition is automatic 
for an OR gate. This is described in Fig. 11. 

In case a), the three inputs of the Muller gate are different and the output keeps its 
value 0. After the decomposition (b), the first Muller gate output switches while the 
output of the second one doesn’t change. Thus the output of the first Muller gate is 
not acknowledged causing a possible glitch in the circuit with the next set of inputs. 

The synthesis method presented in 0 ensures that the circuits obtained are QDI 
and formed of two-input gates. Thus the decomposition phase is done and the 
technology mapping consists in merging gates to obtain an optimized circuit 
following a selected criteria (area, speed, …). Merging gates do preserve delay 
insensitivity. 
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Fig. 10. Muller Gate in standard cells. 

Fig. 11. Naïve Muller decomposition introduces hazard. 
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We decide to implement known synchronous algorithms of technology mapping 
[15-17] and adapt them to asynchronous circuits. Some algorithms of technology 
mapping exist for asynchronous circuits [18-20], but the aim of these algorithms is 
mainly to decompose circuits without hazards, and as we have seen before, the 
decomposition is solved. 

Moreover, technology mapping has been an important domain of research in the 
synchronous world and the resulting algorithms are very powerful. Thus we extend 
the method presented in [16] because the technology mapping algorithm presented in 
this paper has really great performances. Thereby we represent the input library cells 
as tree of OR, AND and MULLER gate and we keep the structural relationship 
between the library cells using lookup table. These trees are then mapped on the 
netlist representing the circuit with the same algorithms as for synchronous circuits. 

6.3 Results 

In the following section, we intend to evaluate in terms of area the gain due to the 
TAL library and the gain due to the technology mapping algorithms. 

The circuit netlist of Fig. 9 comprises 95 OR gates and 107 MULLER gates. The 
Table 2 compares the number of transistors and the area of the circuit, before place 
and route, using the TAL library or the ST standard library. 

 

 
TAL 

library 
Standard ST 

cells 

Nb of transistors 1533 2068 

Area ( m2) (before 
placement and 

routage) 
2469 3116,36 

 
We can conclude out of this figure that without any optimization of the netlist, if 

we only use TAL cells instead of the standard cells to build Muller gates, the number 
of transistors decreases by 35% and the area of the circuit decreases by 21%. 

Now we want to evaluate the gain brought by the technology mapping algorithms 
on the netlist of the digit-slice radix 4 ALU. We can view results of algorithms in the 
Table 3. During the mapping phase, only complex gates of the TAL library are used 
as Muller-Or22, Muller-Or21. OR2 gates are also merged in OR3 and OR4 gates. 

 

 
Native TAL 

netlist 
Optimized TAL 

netlist 

Nb of transistors 1533 1034 

Area ( m2) 
(before placement 

and routing) 
2469 1401,95 
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Table 2. Circuits with TAL or ST standard cells. 

Table 3. Results of technology mapping algorithms. 
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We can notice a decrease of 32% of the number of transistors, and a decrease of 
43% of the area of the circuit compared to the same circuit netlist using the TAL 
library without technology mapping algorithm applied. We thus note a decrease of 
around 50% of the number of transistors and area compared to the initial netlist using 
the ST standard cells library. 

 
Another interesting point is to compare these circuit characteristics with an 

equivalent synchronous digit-slice radix 4 ALU. The asynchronous circuits remain 
bigger than their synchronous equivalent because of the delay insensitive code and 
the local controls of the circuit. However our goal is to reduce this difference as 
much as possible by applying aggressive technology mapping algorithms on the 
circuit and by using cells library specially designed for asynchronous circuit. 

We describe the digit-slice radix 4 ALU using the VHDL language. As we want 
to compare our version to a synchronous circuit, we add a clock in the description. In 
fact, the outputs are memorized in the asynchronous circuit with the Muller gate. In 
the synchronous version, we have to add registers on each output, to achieve this 
memorization. 

To synthesize this circuit, we used Design Analyser from Synopsys and the ST 
standard cells library. Table 4 shows the results.  

 

 
Optimized TAL 

netlist 
Synchronous 

netlist 

Nb of transistors 1034 386 

Area (!m2) 
(before placement 

and routage) 
1401,95 476, 06 

We can conclude that the synchronous circuit is less than 2,9 times smaller, and 
contains 2.7 times less transistors than the asynchronous one. 

7 Conclusion 

This paper presents a general method to model and synthesize asynchronous 
optimized QDI circuits. The method allows synthesizing circuits using multi-rail 
logic and maps them on to single output standard cells. Direct and reverse 
(acknowledge) paths are automatically and jointly synthesized. A first netlist of the 
circuit, containing only two-input gates is generated. Technology mapping is then 
applied targeting a dedicated asynchronous library to optimize the circuit area. 
Others criteria of optimization could be selected as well but the paper focuses on 
area which is one of the must important challenge. 

The method based on Multi-valued Decision Diagrams, is illustrated on a digit-
slice radix 4 ALU. We present different versions of the same circuit to evaluate the 
gain introduced by the asynchronous library and by the technology mapping 
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Table 4. Comparison with the equivalent synchronous circuit. 



 

algorithm. The last results show that our circuit is still 2.9 times larger than the 
synchronous one. 

Future work will be focused on improving the methodology by working in two 
directions: logic synthesis and complex cells specification. 
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Abstract. This paper describes the high-level system modeling and functional 
verification of a novel 3D vertically integrated Adaptive Computing System-
on-Chip (ACSoC), which we term 3D-SoftChip. The 3D-SoftChip comprises 
two vertically integrated chips (a Configurable Array Processor and an 
Intelligent Configurable Switch) through an Indium Bump Interconnection 
Array (IBIA). This paper also describes an advanced HW/SW co-design and 
verification methodology using SystemC, which has been used to verify the 
functionality of the system and to allow architectural exploration in the early 
design stage. An implementation of the MPEG-4 full search block matching 
motion estimation algorithm has been applied to demonstrate the architectural 
superiority of the proposed novel 3D-ACSoC. 

1 Introduction 

 
circuit era, system design is becoming increasingly challenging as the complexity of 
integrated circuits (ICs) rises exponentially. The keenly shortened time-to-market 
period and relentlessly increased non-recurring engineering (NRE) cost are also 
becoming ever more problematic factors. Another growing problem is related to 
interconnection densities, as semiconductor geometries continue to shrink the system 
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performance of ICs is increasingly dominated by interconnection performance. 
Moreover, most current systems have highly demanding data bandwidth 
requirements, particularly for real-time communication or video processing 
applications. To address this interconnection and system-on-chip complexity crisis, 
innovative new computing systems with novel interconnection methods will be 
required. A very promising candidate to overcome these problems is the concept of a 
3D integrated adaptive computing system-on-chip (3D-ACSoC). This concept may 
well be a critical technology for the next generation of computing systems because 
of its wide applicability/adaptability and because of the significant benefits gained 
from 3D systems such as a reduction in interconnect delays and densities, and 
reduction in chip areas due to the possibility for more efficient layouts etc. This 
paper describes the modeling and functional verification of such a 3D-ACSoC, the 
3D-SoftChip [1, 2]. 

 
iteration processes, which can result in a lack of system reliability and extend the 
design time. Moreover, the portion taken up by verification processes in the total 
design time is exponentially increasing. By adopting the proposed SoC design 
methodology using SystemC, the design time can be significantly reduced and more 
reliable systems can be realised.  

 
vertical integration of two 2D chips. The upper chip is the Intelligent Configurable 
Switch (ICS). The lower chip is the Configurable Array Processor (CAP). 
Interconnection between the two planar chips is achieved via an array of indium 
bump interconnections.  

Fig. 1.  3D-SoftChip Physical Architecture 

 
of 3D adaptive computing systems. Section 3 describes the overall architecture and 
the salient features of 3D-SoftChip. A suggested HW/SW co-design and verification 
methodology for development of the 3D-SoftChip is described in Section 4. Section 
5 provides high-level modeling using SystemC and application mapping. Finally, 
some conclusions are made in Section 6. 
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Conventional SoC design methodologies include many error-prone and tedious 

Figure 1 illustrates the physical architecture of the 3D-SoftChip comprising the 

The rest of the paper is organized as follows: Section 2 introduces an overview 
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2 3D Adaptive Computing Systems 

2.1 3D-SoC Overview 

3D systems are becoming an increasingly promising technology to combat the 
current wiring crisis. Previous work has shown that the 3D integration of systems has 
a number of benefits [3, 4]. As described by Joyner, et al, 3D system integration 
offers a 3.9 times increase in wire-limited clock frequency, an 84% decrease in wire-
limited area or a 25% decrease in the number of metal levels required per stratum. 
There are three feasible 3D integration methods; a stacking of packages, a stacking 
of ICs and Vertical System Integration as was introduced by IMEC [5]. There are 
four main enabling technologies for the fabrication of 3D-ICs, Beam recrystallization, 
Silicon Epitaxial Growth, Solid Phase Crystallization and Processed Wafer Bonding 
[6].  

Table 1. 3D Fabrication Technologies 

3D Fabrication 
Technologies 

Characteristics 

 
 

Beam 
Recrystallization 

Deposit poly-silicon and fabricate Thin-Film Transistors (TFTs) 
High Performance of TFT’s 

The high melting temperature of poly-silicon means it is probably not a 
practical fabrication technology 

Suffers from low carrier mobility 
 

 
Silicon Epitaxial 

(SE) Growth 

Epitaxially grow a single crystal Si 
High temperature causes degradation in quality of devices 

Process not yet manufacturable 
 

 
Solid Phase 

Crystallization 

Low temperature alternative to SE 
Flexibility of creating multiple layers 

Compatible with current processing environments 
Useful for stacked SRAM and EEPROM cells 

 
 
 

Processed Wafer 
Bonding 

Bond two fully processed wafer together 
Similar electrical properties on all devices 

Independent of temperature since all chips are fabricated then bonded 
Good for applications where chips do independent processing 

Lack of precision (alignment) restricts inter-chip communication to global 
metal line 

 
 
Table 1 shows the main characteristics of each of these 3D fabrication 

technologies. In this research, however, the focus is on an indium bump 
interconnection array (IBIA). The reason why wafer bonding technology is adopted 
for this work is because the process has particular benefits for applications where 
each chip carries out independent processing. The characteristic of the 3D-SoftChip 
is that each of the two planar chips should be effectively manipulated to maximize 
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computation throughput with parallelism. The use of 3D flip-chip wafer bonding 
technology allows relatively easy signal distribution because signal connections can 
be made between the two vertically integrated planar chips. Moreover, it has low 
parasitics (inductance, capacitance), and up to four orders of magnitudes smaller RC 
parameters, allowing fast signal transmission over a large chip area with little 
attenuation and minimum global clock skew while local clock skew is also kept low. 
Indium is chosen for the interconnects as it has good adhesion, a low contact 
resistance and can be readily utilized to achieve an interconnect array with a pitch as 
low as 10 m. The development of 3D integrated systems will allow improvements in 
packaging cost, performance, reliability and a reduction in the size of the chips. 

(IBIA) 

2.2 Adaptive Computing Systems 

A reconfigurable system is one that has reconfigurable hardware resources that 
can be adapted to the application currently under execution, thus providing the 
possibility to customize across multiple standards and/or applications. In most of the 
previous research in this area, the concepts of reconfigurable and adaptive computing 
have been described interchangeably. In this paper, however, these two concepts will 
be more specifically described and differentiated. Adaptive computing will be treated 
as a more extended and advanced concept of reconfigurable computing. Adaptive 
computing will include more advanced software technology to effectively 
manipulate more advanced reconfigurable hardware resources in order to support 
fast and seamless across many applications. Table 2 shows 

Table 2. Reconfigurable Vs Adaptive Computing Systems 

 Reconfigurable Systems 
 

Adaptive Computing Systems 

 
Hardware 
Resources 

Linear array of homogeneous 
elements(Logic gates, look-up 

tables) 

Heterogeneous algorithmic 
elements(Complete function units such 

as ALU, Multiplier) 
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Fig. 2.  3D Flip-Chip Wafer Bonding Technology using Indium Bump Interconnection Array 

the differ- execution 
entiations between reconfigurable computing and adaptive computing 

µ
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 Reconfigurable Systems 
 

Adaptive Computing Systems 

 
 

Configuration 
Static, Dynamic Configuration, 

Slow reconfiguration time 
 

Dynamic, Partial run-time 
reconfiguration 

Mapping 
Methods 

Manual routing, conventional 
ASIC design tools (HDL) 

 

High-level language (SystemC, C) 

 
Characteristics 

Large Silicon area, Low 
speed(High capacitance), High 
power consumption, High cost 

Smaller Silicon size, High speed, High 
performance, Low power consumption, 

Low cost 

2.3 Previous Work 

Adaptive computing systems are mainly classified in terms of granularity, 
programmability, reconfigurability, computational methods and target applications. 
The nature of recent research work in this area according to these classifications is 
shown in Table 3. 

Table 3. Reconfigurable and Adaptive Computing Systems 

System Granularity / 
PE Type 

Programmability Reconfiguration Computation 
Method 

Target 
Application 

RapiD [7] Coarse(16bits), 
Homogeneous 

 

Single Static Linear Array Systolic arrays, 
Data-intensive 

RAW [8] 
 

Mixed, 
Homogeneous 

 

Single Static MIMD General purpose 

MorphoSys [9] Coarse(16bits), 
Homogeneous 

Multiple Dynamic SIMD Data-parallel, 
Computation 
intensive app. 

QuickSilver 
Adapt2400 [10] 

Coarse(8,16,24,3
2bits), 

Heterogeneous 
 

Multiple Dynamic Heterogeneous 
Node Array 

Comm. 
Multimedia DSP 

Elixent 
DFA1000 [11] 

 

Coarse(4bits), 
Heterogeneous 

Multiple Dynamic Linear D-Fabric 
Array 

Multimedia app. 

picoChip 
PC102 [12] 

 

Coarse(16bits), 
Heterogeneous 

Multiple Dynamic 3way-LIW Wireless Comm. 

3D-SoftChip Coarse(4bits), 
Heterogeneous 

Multiple Dynamic Various types of 
computation 

models 

Comm. 
Multimedia DSP 

 

This table shows that the early research and development was into single linear 
array type reconfigurable systems with single and static configuration but that this 
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has evolved towards large adaptive SoCs with heterogeneous types of reconfigurable 
hardware resources and with multiple and dynamic configurability. As illustrated 
above, the 3D-SoftChip has several architectural superiorities when compared with 

vertical interconnections and the use of state of the art adaptive computing 
technology. This makes it highly suitable for the next generation of adaptive 
computing systems. 

3 3D-SoftChip Architecture 
 

 
is comprised of 4 UnitChips. Each UnitChip has 16 sets of heterogeneous arrays of 
Processing Element (PE), a 32-bit dedicated RISC control processor and a high 
bandwidth data interface unit. A more detailed description of the architecture and 
interconnection network can be seen in [1]. 
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Fig. 3. .Overall Architecture for 3D-SoftChip 

3.1 Overall Architecture of 3D-SoftChip 

According to a given application program, the PE array processes large amounts 
of data in parallel while the ICS controls the overall system and directs the PE array 
execution and data and address transfers within the system. 
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conventional reconfigurable / adaptive computing systems resulting from the 3D 

Figure 3 shows the overall architecture of the 3D-SoftChip. As can be seen, it 
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3.2 Overall Architecture of 3D-SoftChip 

The 3D-SoftChip has 4 distinctive features: Various types of computation model, 
adaptive word-length configuration [2, 13], optimized system architecture for 
communication and multimedia signal processing and dynamic reconfigurablility for 
adaptive computing. 

3.2.1 Computation Algorithm 

instruction addresses to 16 sets of PEs through the completely freely controllable 
switch block so various computation models can be achieved such as SISD, SIMD, 
MISD, MIMD as required. Enough flexibility is thus achieved for an adaptive 
computing system. In the SIMD computation model, 3 types of different SIMD 
computation can be realized; massively parallel, multithreaded and pipelined [14]. In 
the massively parallel SIMD computation model, each UnitChip operates with the 
same global program memory. Every computation is processed in parallel, 
maximizing computational throughput. In the Multithreaded SIMD computation 
model, the executed program instructions in each UnitChip can be different from the 
others, so multithreaded programs can be executed. The final one is the pipelined 
SIMD computation model. In this case each UnitChip executes a different pipelined 

3.2.2 Word-length Configuration 
 
computing system. Each PE’s basic processing word-length is 4-bit. This can, 
however, be configured up to 32-bit according to the application in the program 
memory. This flexibility is possible due to the configurable nature of the arithmetic 
primitives in the PEs [13] and the completely freely controllable switch block 
architecture in the ICS chip. 

3.2.3 Optimized System Architecture for Communication and Multimedia 
Signal Processing 

 
processing, such as data parallelism, low precision data and high computation rates. 
The different characteristics of communication signal processing are basically more 
data reorganization, such as matrix transposition, and potentially higher bit level 
computation. To fulfill these signal processing demands, each UnitChip contains two 
types of PE. One is a standard-PE for generic ALU functions, which is optimized for 
bit-level computation, the other is a processing accelerator-PE for DSP. In addition, 
special addressing modes to leverage the localized memory along with 16 sets of 
loop buffers to generate iterative addresses in the ICS add to the specialized 

3.2.4 Dynamic Reconfigurability for Adaptive Computing 
 
additionally the ICS chip has an abundant memory capacity directly addressable 
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 As described above, one 32-bit RISC controller can supply control, data and 

This is a key characteristic in order to classify the 3D-SoftChip as an adaptive 

There are many similarities between communications and multimedia signal 

Every PE contains a small quantity of local embedded SRAM memory and 

stage. 

characteristics for optimized communication and multimedia signal processing. 



from the PEs via the IBIA. Multiple sets of program memory, the abundant memory 
capacity and the very high bandwidth data interface unit makes it possible to switch 
programs easily and seamlessly, even at run-time. 

4 HW/SW Co-design and Verification Methodology 

Figure 4 shows the HW/SW co-design and verification methodology for the 3D-
SoftChip. Once HW/SW partitioning has been executed, the HW is modeled at a 
system level using SystemC [15] to verify functionality of the operation and to 
explore various architecture configurations while concurrently modeling the software 
in C. After this, a co-simulation and verification process is implemented to verify the 
operation and performance of the 3D-SoftChip architecture and to decide on an 
optimal HW/SW architecture at the early design stage. The rest of the procedure can 
be processed using any conventional HW/SW design methodology. 
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Fig. 4. Suggested HW/SW co-design and verification methodology 
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 More specifically, the SW is modeled using a modified GNU C compiler and 
Assembler. After the compiler and assembler for ICS_RISC has been finalized, a 
program for the implementation of the MPEG-4 motion estimation algorithm will be 
developed and compiled using it. After that, object code can be produced, which can 
be directly used as the input stimulus for an instruction set simulator and system 
level simulation. The HW/SW verification process can be achieved through the 
comparison between the results from instruction level simulation and system level 
simulation. From this point on, the rest of the procedure can be processed using any 
conventional HW design methodology, such as full and semi-custom design. 

5 High-level System Modeling and Application Mapping 

 The high-level system modeling has been accomplished using SystemC. A PC 
based development environment (Microsoft Visual C++ Version 6.0) has used to 
compile the high-level modelled SystemC code because of its easy accesibility. 
Figure 5 shows the UnitChip block diagram, SystemC file structure and the output 
waveform from the system-level modeling. The composition of the UnitCAP and 
UnitICS becomes the UnitChip. It can be largely divided into 4 kinds of sub-
SystemC files, that is ICS_RISC, Memory, DMA and UnitCAP. The simple ALU 
instruction has been mapped in this system-level modeled UnitChip. The simulation 
result shows its functionality. In Figure 5(c), the upper side circle indicates the 
ICS_RISC operation result, and lower circle shows the PEs’ operations, which is the 
execution of simple ALU functions in the PEs’ with parallelism. The signal named 
as a PE1.dOut refers to the output signal from PE1. The functionality can be verified 
by checking these signals (from PE1~PE16) and is as expected.  

 
 

                           

    (a)                                                          (b) 
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             (c) 

Fig. 5. System-level modeling of 3D-SoftChip: (a) UnitChip block diagram, (b) SystemC file 
structure of UnitChip and (c) the output waveform of system-level modeled UnitChip 

5.1 Application Mapping for 3D-SoftChip 

5.1.1 Full Search Block Matching Algorithm 
Motion Estimation (ME) is introduced to exploit the temporal redundancy of video 

sequences and is an indispensable part of video compression standards such as the 
ISO/IEC, MPEG-1, MPEG-2, MPEG-4 and the CCITT, H.261/ITU-T, H.263 etc. 
Since ME is computationally the most demanding portion of the video encoder, it 
can take up to 80% of total computation time and it can be a major limiting factor for 
real-time performance. Among the many different ME algorithms, Full Search Block 
Matching (FBMA) is one of the most widely used in hardware, despite its high 
computational cost, because it has the optimal performance and lowest control 
overhead. The block matching motion estimation algorithm compares a specific 
sized block of pixels in the current frame with a range of equally sized pixel blocks 
in the previous frame to find the best match (minimum difference) between two of 
the blocks. The position of the best matched block can then be encoded as a motion 
vector for the reference block minimizing the total entropy in the frame. In FBMA 
the best match is determined by calculation of the sum of absolute differences (SAD) 
for each candidate search location (dx, dy) to find the minimum SAD, the SADs are 
calculated as follows: 

11
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Where ( , )kI m n , 1( , )kI m dx n dy
!

+ +  are intensity values of the pixels located at 

position (m,n) in the current and previous frame blocks respectively. In Figure 6, 
(x,y) indicates the current block pixel location, it is matched to every candidate 
search location within a (2 1) (2 1)p N p N+ ! " + !  search window area, where [-p, p-1] 

is the pixel search range. The SAD value is calculated for every candidate block with 
a displacement (dx, dy) 

 

Current Frame
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Current block
(x+N, y+N)

(x, y)

Nv

Nh

Candidate MV Candidate Block

2p + N

2p + N (x+N +dx, y+N+dy)

(x+dx, y+dy)

Search area

 
Fig. 6. Block Matching Motion Estimation 

Once the SAD for each subsequent candidate block is calculated, it is compared to 
the existing SAD, if it is smaller than a new motion vector is stored. The calculation 
of SAD values and the matching process continues until all candidate blocks are 
matched and the overall minimum SAD is found. The stored motion vector is then 
the vector to the block with the best result for displacement (dx,dy), which has the 
minimum SAD. 

5.2 FBMA Mapping Method for 3D-SoftChip 

Figure 7. shows the mapping method and data flow for implementation of the 
FBMA to the system-level modeled 3D-SoftChip. The FBMA mapping is 
accomplished over 10 distinct stages.  

In this mapping, it is assumed the basic word-length of the S-PEs and PA-PEs is 
8-bit (a simple matter of architecture scaling within each PE). The detailed 
explanation of this mapping is as follows: 

 
1) STEP 1-Load REF. BLOCK DATA INTO PE ARRAY SRAM: The first 

operation is to load reference block data ( ( , )kI m n ) into embedded SRAM in each 

PE in the array. 
 
2) STEP 2-EACH PE MOVES THIS DATA TO INTERNAL REGISTER: Each 

PE moves the reference data from the embedded SRAM into an internal register so it 
is available to be used for calculation of SAD values for the entire search window. 
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3) STEP 3-LOAD FIRST SEARCH POSITION BLOCK DATA INTO PE 
ARRAY SRAM: The block data for the first search position ( 1( , )kI m dx n dy

!
+ + ) is 

then loaded into the embedded SRAM in each PE in the array ready for calculation 
of the SAD value between the reference block and this first search position . 

 
4) STEP 4-EACH PE EXECUTES SUBSTRACTION AND ABSOLUTE 

VALUE COMPUTATION: In this step, each PE carries out a subtraction operation 
between the reference block data and the current search position in SRAM, the 
absolute value of this resulting difference is stored as the absolute difference value 
for that block position. 

 
5) STEP 5-PARTIAL SUMMATION (1): In this step every odd columned PE 

performs a partial sum operation of its absolute difference value with the value from 
the PE to its immediate right in the array, the result is stored as a double-word value 
across both PEs. 
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6) STEP 6-PARTIAL SUMMATION (2): In this step the two partial sums 
computed in the previous step are summed in the same way, every odd columned PE 
pair sums its result with the result from the PE pair to its right, this result is stored as 
a quad-word value across all four PEs in each row 

 
7) STEP 7-PARTIAL SUMMATION (3): In this step the column wise operation 

carried out in step 5 is repeated row wise to accumulate another set of partial sums, 
in this case, however, the second row of PEs accumulated its result with the result 
from the row above, while the third row of PEs accumulates its result with the result 
from the row below. 

 
8) STEP 8-PARTIAL SUMMATION (4): In this final partial sum accumulation, 

the second row of PEs sums its result with the result from the third row, producing 
the total SAD value for that search position. 

 
9) STEP 9-WRITE BACK RESULT DATA TO THE ICS_RISC: Finally the 

resultant SAD value calculated in STEP 8 is written back to the internal register in 
the ICS_RISC for comparison with the previous minimum and updating of the 
motion vector if applicable. 

 
10) STEP 10-REPEAT STEPS 4 TO 9: The next search position data block can 

be loaded into the SRAM in the PE array while the SAD calculation is being carried 
out for the current search position so once the result had been written back the 
calculation of the SAD for the next search position can be begun immediately. 

5.3 Performance Analysis 

Figure 8 shows the performance comparison of the 3D-SoftChip with a DSP 
processor, several ASICs and MorphoSys for matching on 8 " 8 reference block 
against its search area of 8 pixels displacement. There are 81 candidate blocks (27 
iterations) in each search area [16]. In the 3D-SoftChip, as described above, the 
number of processing cycles for one candidate block is just 7 clock cycles (each 
UnitChip computes one quarter block, so with 4 UnitChips one complete block is 
computed every 7 cycles), so the total number of processing cycles for the 3D-
SoftChip becomes 567 (81 iterations of 7 cycles each).  

The number of clock cycles required is very close to that reported for 
MorphoSys, with just 4 UnitChips, this, however, can readily be improved simply by 
increasing the number of UnitChips on a scaled up 3D-SoftChip. A 4"4 UnitChip 
array, for example, would have an effective throughput of one block every 142 
cycles. In addition to this, considering the characteristics of the 3D system, there are 
other significant advantages. Data dependency is largely eliminated so that after the 
initial set-up there is a 100% PE utilisation. The reference and candidate block data 
can be moved into the embedded SRAM in the PE concurrently with array 
execution, so the PEs can operate continuously. Also low power consumption can be 
achieved through a minimisation of the number of data accesses, because most of 
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data manipulation can be executed within the PE array. Most importantly, however, 
because all memory is directly accessible within the 3D-SoftChip via the IBIA there 
are effectively zero external data reads and thus power consumption will be greatly 
improved over all the other approaches. 

 
 

Fig. 8. Performance comparison for Motion Estimation 

When comparing with the performance of the DSP processor and dedicated 
ASICs, the performance of the suggested 4 4 UnitChip 3D-SoftChip has remarkable 
advances with a theoretical capability of more than 3.8 times the performance. Given 
its wide applicability/adaptability to any number of other applications, the 
performance achieved compared to these dedicated processors is a potentially 
enormous advancement. This clearly demonstrates the architectural superiority of the 
suggested novel 3D-SoftChip. 

6  High-level System Modeling and Application Mapping 

The novel 3D vertically integrated adaptive system-on-chip architecture as a next 
generation computing system along with its functional verification and the mapping 
of an MPEG4 motion estimation algorithm has been presented. The performance of 
the execution of the MPEG full search block matching algorithm has been shown to 
be potentially more than 3.8 times improved over current generation processors. Due 
to these significant performance, power and cost advantages it can be shown that the 
suggested 3D-ACSoC is one of the most suitable architecture for the next generation 
of computing system. Moreover, the advanced HW/SW co-design and verification 
methodology can accelerate the reliability and significantly reduce the design time, 
especially the time and effort required for verification. This paper indicates a highly 
promising research direction for future adaptive computing systems and advanced 
and efficient HW/SW development methodology for ever more complicated SoCs. 
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Abstract. This paper aims at introducing a complete methodology that
allows to easily implement on an fpga a system specification by exploit-
ing the capabilities of partial dynamic reconfiguration provided by the
modern boards. In the resulting system, which includes a set of fixed
components (such as a processor and a controller) as well as some re-
configurable area (which can be allotted to different tasks running con-
currently and replaced independently of one another — thus possibly
hiding reconfiguration times), reconfiguration is handled internally by
the system, without the use of external hardware. In order to meet the
software requirements of complex systems, the solution is provided with
a porting of a real–time gnu/Linux os, µCLinux, which allows software
processes to exploit a rich set of features, and with a Linux module that
simplifies and enhances the handling of reconfiguration.

1 Introduction

To cope with changing user requirements, evolving protocols and data–coding
standards, together with demands for the support of a variety of different user
applications, many emerging appliances in communication, computing and con-
sumer electronics need that their functionalities remain flexible after the system
has been manufactured. fpgas provide a means to meet these requirements, and
have thus received increasing attention over the last years: not only they can im-
plement arbitrary logic functions, but can also be reprogrammed an unlimited
number of times during their lifetime.

Most applications running on fpga–based systems are implemented using a
single configuration per fpga. This means that the functionality of the circuit
does not change while the application is running. Such an application can be
referred to as being Compile–Time Reconfigurable (ctr), because the entire
configuration is determined at compile–time and does not change throughout
system operation. Another strategy is that of implementing an application with
multiple configurations per fpga. In this scenario the application is divided into
time–exclusive operations that need not (or cannot) operate concurrently. Each
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of these operations is then implemented as a distinct configuration which can be
downloaded onto the fpga as necessary at run–time. This approach is referred
to as Run–Time Reconfiguration (rtr) or Dynamic Reconfiguration.

fpgas approaches to dynamic reconfiguration can be further divided into two
categories: small bits and modular based. The former consists in changing small
portions of the design in order to modify the system behavior — an example
of this reconfiguration technique can be found in Xilinx xapps [1, 2]. The latter
allows the creation of complex reconfigurable systems, composed of different ip–
Cores. The Caronte methodology [3–5] describes how to create a flexible system
design, where each core can be seen as a module that implements a specific
functionality of the system.

Reconfiguration can be also classified in terms of external or internal. In the
former scenario there exists an external entity which drives the configuration
— either a pc connected to the board (for example using the jtag controller)
or some other kind of dedicated device. In this case the fpga has a passive
role, simply receiving the configuration data from the outside. With internal
reconfiguration, instead, it is the system itself that modifies its own structure,
and the code running on the local processor is communicating with the Internal
Configuration Access Port (icap). This allows the system to run without needing
to be connected to other devices, as long as it is possible to store all the necessary
configuration information in the system memory. An example of such a system
is the one proposed in [6].

The last generation of fpgas, due to the high density of reconfigurable logic
blocks present in the device, allow the designer to implement on them a complete
system. This means that it is possible to include also a general purpose micropro-
cessor, whether hard core or soft core. The designer, thus, must be ready to take
into account also the software requirements of such a specification: in particular
the processor, whether hardcore (such as the Powerpc) or softcore (MicroBlaze
and Neos), typically runs a standalone executable implementing the application
logic and exploiting the underlying hardware. On the other hand, though, there
are scenarios that require the presence of a more complex software system to
manage multiple tasks, interrupts and various system resources. This is the task
typically delegated to an operating system.

There is a huge number of embedded and real–time operating systems, of-
ten built on top of a microkernel implementing basic management of interrupts
and peripheral i/o. Also gnu/Linux, which is a complete operating system ker-
nel, has been ported to architectures such as Powerpc and MicroBlaze, and
adapted to support embedded systems such as development boards using Virtex–
ii and Virtex–ii Pro fpgas. For example, the µClinux project [7] contains a set
of patches and extensions to the standard Linux kernel for specific hardware
mounted on the most common development boards.

The Linux kernel modular architecture makes it easy to implement new mod-
ules and load or unload them dynamically in a running system.

The next section will present the state of the art of dynamic reconfigurable ar-
chitectures and in section three we will propose our own methodology. Sections
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four and five will show the physical implementation of the proposed reconfig-
urable architecture both for the hardware and the software components. Finally
section seven will show some experimental results.

2 Previous work

Many implementations are now available both for ctr, such as [8–10], and for
rtr [11–13].

In [14] the authors propose a new methodology to allow the platforms to hot–
swap application specific modules without disturbing the operation of the rest
of the system. This goal is achieved through the use of partial dynamic recon-
figuration. The application has been implemented onto a Xilinx Virtex–E fpga,
and external reconfiguration is handled by an external device such as a Personal
Computer, while ensuring the correct operation of those active circuits that are
not being changed [15]. The reconfigurable modules are called Dynamic Hard-
ware Plugin (dhp). A methodology is proposed to transform standard bitfiles,
computed by common computer aided design tools, into new partial bitstreams
that represent the dhp modules, using the PARtial BItfile Transform tool, par-
bit [16]. The parbit tool transforms fpga configuration bitstreams to enable
Dynamically Hardware Plugins modules in the Field–programmable Port Ex-
tender (fpx) [17]. The tool accepts as input the original bitfile, a target bitfile
and some parameters given by the user, and provides as output the new bit-
stream, which then can be used to load a dhp module into any region of the
Reprogrammable Application Device (rad) on the fpx.

In [18] the hardware subsystem of the reconfiguration control infrastructure
sits on the on–chip peripheral bus (opb). The microprocessor, Powerpc or Mi-
croBlaze, communicates with this peripheral over the opb bus. The hardware
peripheral is designed to provide a lightweight solution to reconfiguration. It
employs a read/modify/write strategy. At any time, only one frame of data is
considered. In this way no external memory is not needed to store a complete
copy of the configuration memory. The program installed on the processor re-
quests a specific frame, then the control logic of the peripheral uses the icap
to do a readback and loads the configuration data into a dual–port block ram.
One block ram can hold an xc2v8000 data frame easily. When the read–back is
complete, the processor program directly modifies the configuration data stored
in the bram. Finally, the icap is used to write the modified configuration data
back to the device. The software subsystem is implemented using a layered ap-
proach. This solution allows a change in the implementation of the lower layers
without affecting the upper layers, and proved useful for debugging. There are
functions for downloading partial bitstreams stored in the external memory, for
copying regions of configuration memory, and pasting it to a new location [18].

In [19], the authors considered reconfigurable computing as a close combina-
tion of hardware cores and of the run–time instruction set of a general purpose
processor. The classification of core types is generally accepted to be split into
three classes [20]: Hard cores, Firm cores and Soft cores. In [21], a new class
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of cores called run–time parameterizable (rtp) has been introduced. rtp cores
allow a single core to be computed and customized at run–time. For example, an
adder core can be produced, and then parameterized at run–time for different
operand widths. The core produces all the required configuration data to de-
fine the logic and the routing. The possibility of determining limited amounts of
routing at run–time is also dealt with in [21]. An innovation of this approach con-
sists in considering the rtp cores as a specific example of a reconfigurable core,
placed on the programmable device in a dynamic fashion to respond to the chang-
ing computational demands of the application. A problem of this methodology,
though, is that the rtps are targeted only to a single device family and there
is no information about the communication channel between rtps and about
how they solve the physical reconfiguration problem. To control the mapping
of cores at application run–time onto the programmable device, a management
mechanism is required.

Our aim in this work is threefold. First of all, we show a novel implementation
of internal partial dynamic reconfiguration requiring only tools that are already
widely used for fpga–based systems in order to be implemented. Secondly, we
propose a new methodology that introduces the partial dynamic reconfiguration
degree of freedom directly in the design phase. Lastly, we build an innovative
modular Linux driver that greatly simplifies the software handling of reconfig-
uration, allowing the programmer to concentrate on a hierarchical view of the
system to be implemented.

3 The proposed methodology

In this section we introduce a new design methodology for the implementation
of a dynamic reconfigurable system using a common fpga, through the com-
bination of different design flows and using a development tool such as edk,
Embedded Development Kit, produced by Xilinx Inc. The proposed methodol-
ogy could be applied within any specific device just porting it to a different design
technology. In order to show the possibility of implementing the reconfiguration
design flow we decided to use the Xilinx tools but it could be easily ported to be
reused for different systems that can achieve embedded dynamic reconfiguration.
One of edk most important features is the possibility of developing complete
systems, integrating both the software and the hardware components of the de-
sign in a single tool. In fact, edk provides developers with a rich set of design
tools, such as xps (Xilinx Platform Studio), gcc, xst (Xilinx synthesizer), and
a wide selection of standard peripherals required to build systems with embed-
ded processors using the MicroBlaze softcore processor or/and the ibm Powerpc
cpu [22]. The proposed methodology aims at introducing dynamic reconfigura-
tion in the hardware part of the system, without increasing the complexity of
the implementation, simply by changing the tools employed [4, 5]. In this way
the implementation can be easily mapped on a standard fpga. The Caronte
Flow [3,4] is mainly composed of three phases:
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Fig. 1. Reconfiguration Design Methodology Flow.

HW–SSP Phase The HardWare Static System Photo Phase identifies a set
of edk system descriptions that will be (partially) dynamically reconfigured
at run–time. These functional blocks are called BlackBox cores and will be
described in Section 4.2.

Design Phase Aim of this phase is to collect all the information needed to
compute all the bitstreams to physically implement the embedded reconfig-
uration of the fpga.
It solves three different problems:
– Identify the structure of each reconfigurable block by providing a specific

implementation for each of them. This phase is based on the Xilinx
Modular Based Design approach;

– Identify, using the Floorplanner tool provided in the ise tool chain, the
area of each reconfigurable component of the system;

– Solve the communication problem between reconfigurable modules, by
introducing Bus Macros that allow signals to cross over a partial recon-
figuration boundary.
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Bitstream Creation Phase This phase creates all the bitstreams needed to
implement the system description onto an fpga through the dynamic em-
bedded reconfiguration.

Figure 1 shows the described methodology and how it can be included into the
standard fpga flow.

The Caronte Flow accepts as input the result of a previous partitioning and
analysis phase [4]. Whatever the reason for creating a dynamic hardware config-
uration may be, there are common implementation issues: the system descrip-
tion must be partitioned in a fixed set of components that will be dynamically
mapped onto a partitioned architecture. For this purpose, both the fpga phys-
ical area and the initial system description have to be divided into several parts
to provide the correct starting point for a dynamic reconfigurable design suitable
to the system description provided. This first phase identifies all the processing
elements of the description that will be mapped onto the corresponding part of
the fpga, as shown in Figure 2.

Fig. 2. Partitioning layers.

3.1 HW–SSP Phase

The input of the Caronte Flow is composed of a special set of edk Cores, the
BlackBox elements, described in Section 4.2, that are used by the hw–ssp phase
to create all the hw Static System Photos, as shown in Figure 3.
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Fig. 3. HW–SSP definition.

An hw–ssp is an edk system based on the Caronte architecture, described
in Section 4. This architecture contains a fixed part and several reconfigurable
blocks, named BlackBoxes. The application moves from an hw–ssp to another by
reconfiguring the BlackBoxes and by leaving the fixed part unchanged. The idea
is to consider the system in time as a sequence of static photos. All those hw–ssp
share the static part of the system, which is used to implement the embedded
reconfiguration of the other components, as shown in Figure 4. Finally, the edk
output is used as input for the next phase.

3.2 Design Phase

The idea is to implement a specific reconfiguration–oriented environment that,
starting from a system description provided by edk and using the Modular Based
Design (mbd) generates all the bitstream for the final system implementation.
To obtain all the hw–ssps needed by the mbd the designer will use a part of the
edk implementation chain, starting from the design phase to the vhdl genera-
tion one. The produced vhdl descriptions must take into account the dynamic
nature of the system: the main issues are raised by the communication channel
between modules. In order to allow communication among dynamic modules
a special bus, the bus Macro, has to be introduced into the design descrip-
tion. Each time a partial reconfiguration is performed, the bus macro is used to
establish unchanging routing channels between modules, guaranteeing correct
connections.

components into specific fpga areas; for our purpose this is indeed necessary,
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since the fpga is partitioned in fixed and reconfigurable areas. To accomplish
this task, the Floorplanner, a tool contained in the ise Xilinx package, can be
used. The Floorplanner provides an easy way to constrain the placement of every
component of a project onto a specific area of the physical architecture. When
the fpga is partially reconfigured, the configuration bitstream, called partial
bitstream, contains data only for the area to be reconfigured. Partial bitstreams
are computed as the logical difference between two complete configuration bit-
streams. This means that, without constraining the components placement, it is
impossible to guarantee that the partial bitstream between two configurations
will affect only the desired area.

Fig. 4. HW–SSP point of view: the system execution.

4 The Hardware Architecture

This section describes the proposed model of dynamic reconfiguration under the
gnu/Linux operating system environment, using a board equipped with a Xilinx
Virtex–ii Pro fpga with a Powerpc 405 processor and a Linux distribution based
on the µClinux kernel.

the controller and the scheduler for the given system implementation. Figure 5
presents the complete architecture, showing both the fixed and reconfigurable
sides.

Both from the hardware and the software point of view, the starting point
for our work has been the Board Support Package (bsp) supplied by the board
producer, Avnet Inc. The hardware support consists of a project to use with
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Xilinx design tools, edk and ise, including most of the physical hardware com-
ponents of the board, such as processor, system buses (opb and plb), flash and
ram memory, Ethernet controller and serial port.

(eldk),
a package including tools for cross–development such as the gcc compiler for
Powerpc and MicroBlaze architectures and the µClinux kernel. eldk can run
on any Linux distribution on x86 machines. Both eldk and the kernel have been
modified by Avnet to include kernel support for specific hardware of the board
(Ethernet, flash, leds) and some scripts to download the kernel image to the
board using a network connection.

4.1 The Fixed Architecture of Caronte

The body of the Caronte architecture is the real physical implementation of the
fixed part. It is basically a Von Neumann architecture composed of six classes
of components:

– ICAP, used to read/write a configuration from/to the bram to/from a
specific BlackBox;

– IP-Core Manager, IPCM, this hardware module is a sort of bridge be-
tween the sw side of the architecture, the kernel of the operating system,
and the hw side, the BlackBoxes;

– Memory, used to store all the partial bitstream data information;
– Buses, used to implement the architectural communication infrastructure.

It is possible to identify two different kind of busses:

• The ibm CoreConnect technology, that represents the 90% of the entire
communication system of the architecture;
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The Avent bsp also contains the Embedded Linux Development Kit



• The bus macro technology, which provides a fixed bus of inter–design
communication. Each time partial reconfiguration is performed, the bus
macro is used to establish unchanging routing channels between modules,
guaranteeing correct connections.

– PPC405 Processor, used to provide the physical support for the executable
code;

– Interrupt Controller, used by the ppc405 processor and the BlackBoxes
to dialog one to each other.

4.2 The reconfigurable side: the blackboxes

A BlackBox is a reconfiguration core, mainly defined by a processing element of
the starting system description, which is set into a fixed known portion of the
fpga that can be completely reconfigured without interfering with the execution
of the remaining part of the fpga. Therefore, a BlackBox can be considered as
a shell for processing elements. The BlackBox includes not only the logic im-
plementing the component functionalities, but also the communication channel
interface between the node and the system. This interface allows the node to
send data directly on the communication channel or to temporally store a fixed
number of data in an internal communication spooler, which is used during the
reconfiguration action.

bus, or a peripheral or even a processor. A BlackBox can be considered as an
edk component, although this is a simplified way of thinking of a BlackBox. The
main difference is that a BlackBox is not a static component mapped onto the
fpga, as any classical edk component. It can be considered as a virtual shell
used to contain different processing elements of the system description that need
to be mapped onto the fpga. In order to be able to implement a partial recon-
figuration of a portion of the fpga it is important to know which is the portion
that has to be reconfigured. The Xilinx Platform Studio Tool of edk, used to
create fpgas architectures, offers an automatic synthesis engine that generates
a real project implementation by arranging each logic unit in a standard way. A
BlackBox provides the interfaces needed by the vhdl description of a process-
ing element to dialog with all the other components of the architecture, such
as the CoreConnect bus, the processor, the interrupt controller and the other
blackboxes. The BlackBox is shown in Figure 6.

During reconfiguration the Processing Element node logic will be modified,
while the communication interface and ip Interconnect (ipic) between the node
logic and the interface will remain the same. This means that a BlackBox is
constituted by two vhdl, Verilog or edif files, the first one containing the
architecture–dependent logic interface and the second one the processing element
hardware description.
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5 The Software Architecture

The software side of the Caronte architecture consists of a scheduler for dynamic
computation of the execution times, and a controller which manages the reconfig-
uration process. Those components run as user processes under the gnu/Linux
operating system. To deal with the underlying hardware, such as the icap mod-
ule and the reconfigurable ip–Cores, a driver system have been introduced, based
on the standard Linux kernel modules system.

5.1 The “Caronte Software”

In a first implementation, the Caronte software was realized as a standalone
system, while now it has been integrated in an embedded version of the Linux
operating system, moving it to a userspace process. The Caronte architecture
allows the mapping of each processing element according to placement informa-
tion. The estimated times for different reconfigurations are computed statically,
but actual times can differ from those calculated. For this reason, the processor
also runs a dynamic scheduler, which takes into account modifications from the
original schedule.

The controller stands in a time watching state, controlling that the running

In case the BlackBox running time exceeds the statically estimated time, the
controller informs the scheduler that the run time of the BlackBox is greater than
the estimated one. According to the information provided by the controller, the
scheduler updates the processing element time information and computes a new
schedule on the graph by following a list–based approach, in order to identify the
new critical path and reorder the processing elements accordingly. The Caronte
scheduler can be split in the following phases:
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Fig. 6. A BlackBox overview.

time of each BlackBox meets its statically computed time.



– Controller Information Checking Phase: stores the information pro-
vided by the controller;

– New Time Computation Phase: estimates a new execution time for the
processing element given by the controller;

– New Critical Path Computation Phase: computes the new critical path
and changes the Critical Path, and Scheduled Critical Path variable values.

After informing the scheduler the controller returns in its time watching state,
waiting for a new event.

Anytime a BlackBox execution terminates within its estimated time, a recon-
figurable action has to be performed. At the end of its execution the BlackBox
informs the controller of this event. During reconfiguration the controller, that
knows which is the next node to be mapped on this BlackBox, downloads from

At the same time the controller informs all the BlackBoxes (bbs) which can be
disturbed by the reconfiguration action to activate their spooler communication
system. At this point the ppc405 allows the icap to reconfigure the BlackBox
with the new bitstream. Finally, when the new BlackBox has been mapped and
starts its computation, the icap informs the processor that the reconfiguration
action has successfully completed.

5.2 Software support to dynamic reconfiguration

Stand alone code running on the fpga needs to deal at a low level with hardware,
including the icap. This means that creating a reconfigurable system has strong
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the memory to the bram the correct configuration bistream, as shown in Figure 7.

At this point, the controller enables the normal communications for the bbs
that have been stopped.

Fig. 7. Download the new configuration bitstream on the BRAM.



implications also from the software point of view. If dynamic reconfiguration is
desired, the application must implement functions both addressed to the system
purpose (the actual computation) and to interface with the icap.

The actual Caronte architecture is based on gnu/Linux operating system,
which is a complete multitasking operating system. The operating system con-
siders the reconfiguration process as an autonomous thread of computation.

and the functions which deal and manage the hardware are separated. In this
case, the application code runs as a user process in the system; this means that
it does not have direct and low level access to the hardware, but it has to pass
all the requests through operating system calls (read, write, etc...). Therefore,
as far as reconfiguration is concerned, the os itself must take care of the com-
munication with the icap, by exporting an interface for user processes.

Since the µClinux kernel does not have any kind of support for icap, we
developed a Linux kernel module implementing a driver for the icap peripheral.
Linux operating system allows userspace programs to access devices via special
files, located under the /dev directory. Each device is assigned a couple of num-
bers as id, indicating the driver managing the device (the “major” number) and
the id of the specific device (the “minor” number); furthermore, they are also
distinguished in “character” and “block” devices, based on the kind of access
they support. When a kernel driver registers a major number, all access requests
to the corresponding devices are directed to it, and hence it must implement
handlers for various system calls: open, close, read, write, and so on. The icap
module, on startup, registers a character device major number (by default 120)
and reserves the memory–mapped address space corresponding to the icap de-
vice (as shown in Figure 8); the base address can be specified as a parameter
when loading the module. At this point it is possible to a create a device file
with major number 120 and minor 0, for example /dev/icap, that processes can
access to execute reconfiguration.

System Calls There are currently three system calls, besides the open and the
close operations, implemented by the driver:

write when a process requires reconfiguration, it simply writes the partial bit-
stream to the icap device; this can also be done manually by a user using
standard Unix commands, for example cat diff.bit > /dev/icap. The
reconfiguration does not take place immediately; instead configuration data
is stored in a memory buffer until a specific request is issued through ioctl:
in this way it is always possible to change the data stored by simply rewriting
a new bitstream onto the device.

read reading from the icap device allows a user process to access the data
stored in the memory buffer. The read operation allows reading a fragment
or the entire bitstream loaded in the memory buffer.

ioctl this system call is generally for device control, to get or set configuration
parameters and to interact with it in a more general way than allowed by
read and write. When performing an ioctl call, the only required argument
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For this reason, the software side of Caronte (the scheduler and the controller)



to the function is a number indicating the type of operation requested.
In the driver, two ioctl operations are allowed: the first is used to discard
configuration data from the memory buffer, the second starts the partial re-
configuration, provided that a valid bitstream has been loaded into memory.
In the latter case, as shown in Figure 9, the operation is performed by send-
ing the bitstream, byte by byte, to the base address of the icap component.
After the reconfiguration has been completed, the driver prints a message in
the kernel log with the time used for the operation.

/proc filesystem interface The icap kernel module uses the standard Linux
proc pseudo–filesystem to give information on the status of the driver. This
filesystem, from a user point of view, is composed of normal files and directories,
but reading or writing files actually triggers functions that can do any kind of
action: usually reading a file results in getting information on devices status,
while writing sets or modifies some parameters.
On module initialization, the /proc/icap directory is created; here the following
files can be found:

info: the file contains information on the icap device, such as device id, address
range in memory–mapped space and amount of memory buffer used.
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Fig. 8. ICAP Linux kernel module structure and registrations process.



status: reading this file will send a command to the icap which will result in
reading the fpga status register, containing flags reporting information on
the status of the device and configuration mode.

devices/0: when a valid bitstream is loaded in the memory buffer, this file con-
tains a human–readable dump of the information contained in the bitstream
header, such as design filename, target part, creation time and date.

The module is designed to provide the capability of handling multiple icap
devices (the actual number is specified at compile time), although current fpgas
contain only one physical icap component. If more than one device is used, the
devices directory contains a file for each device.

The driver described can be used for both kinds of reconfiguration, small bits
or module based, as long as a partial bitstream is available for download. Yet, if
the small bits reconfiguration consists usually in modifying little configuration
details in mapped peripherals or ip–Cores, not affecting the rest of the system,
when one or more ip–Cores are added or removed, new features will be available
while others may no longer be. This means that the operating system must cope
with these changes and manage those resources, making them available to user
processes.
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6 The reconfiguration system

The architecture described in this section aims at creating an integrated hard-
ware/software reconfigurable system where ip–Cores can be loaded and unloaded
while the system is running, based on the required functionalities and on the area
physically available on the fpga. The idea is to create an hot–plug mechanism,
where new peripherals announce themselves, allowing automatic loading of the
corresponding software driver.

From the hardware side, it is necessary to have a controller that collects the
information on the newly added ip–Cores, passing them to the software that
manages the dynamic loading of the drivers. The information mainly consist of
the Core type, which allows selection of the proper driver, and the i/o memory
range.

The software side, instead consists of a core module that interfaces with the
hardware controller and loads the specific drivers.

This hardware/software architecture has been implemented on an Avnet
Virtex-ii Pro Evaluation Board, connected to a Communications/Memory Mod-
ules, also produced by Avnet. The board integrates a Xilinx Virtex-ii fpga
with an embedded PowerPc 405 processor, used to run the software part of the
system, various kinds of ram memory, Flash (where the operating system im-
age is stored) and many additional components such as communication ports
(ethernet, serial, . . . ) and general purpose i/o connectors.

6.1 Modular software architecture

The structure of the software component of the architecture is in some way spec-
ular to the hardware counterpart, implementing the dynamic reconfigurability
as the possibility of loading and unloading at runtime drivers for the ip–Core
mapped on the fpga. As already discussed, addition and removal of ip–Cores
results in changes in resources availability, which has deeper implications on sys-
tem functionalities than small bits reconfiguration. The proposed architecture
extends the one presented in [6], introducing a software layer that interfaces the
operating system and, as a consequence, the userspace, with ip–Cores, through
specific drivers.

Similarly to the hardware controller, there must be a software manager, called
ip–Core Manager (ipcm), which acts as a layer between the kernel and the lower–
level ip–Core drivers.

The IP–Core Manager The ipcm architecture exploits the Linux kernel mod-
ularity, creating a hierarchical structure among the kernel, the ipcm itself and
the ip–Core drivers, as shown in Figure 10. From the kernel point of view, it
is a standard module which registers a major number (by default 121) among
character devices that will be used to access all the ip–Core devices. The ipcm
requests to the kernel an address space to be assigned to the registered ip–Cores,
allowing them to use memory mapping to communicate with the drivers.
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to interface with the hardware controller; upon each partial reconfiguration,
the controller sends an interrupt request to the ipcm. In the interrupt service
routine, the ipcm gets from the controller the information on which devices
have been deconfigured and which added. An ip–Core is essentially identified
by its type (a numeric identifier) that defines the driver to be loaded for its
management, and by its address space (base address and range), which must
be in the address range registered by the ipcm.

specific drivers load/unload: ip–Core drivers are implemented as Linux ker-
nel modules, but they don’t need to be loaded manually; instead, each time
a core is loaded for which a driver is not already present, the ipcm automat-
ically loads it.

structure containing data on the driver; the driver, during the loading phase,
provides the ipcm all the necessary data (driver id, name, list of implemented
system calls) invoking the function exported by the manager. In this way,
the ipcm maintains an updated list of all registered drivers; each driver data
structure also contains the list of the ip–Cores managed by the driver.

system calls management: other than providing registration and deregistra-
tion capabilities, the module must also allow the use of the ip–Core from the
userspace. A unique character device major number is associated with the
ip–Cores; the ipcm uses the minor number to identify the different ip–Cores.
Since this identifier is currently implemented in Linux with an unsigned 8–
bit wide integer, this allows up to 256 different ip–Cores to be registered,
which is a fairly large number for current fpga capabilities.
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The basic functions of the ipcm are the following:

IP–Cores registration/deregistration: to accomplish the task, the ipcm needs

Besides loading the driver, the manager exports a function that registers a

to the correct driver which implements this call for the specific underlying
When a system call is issued for a device, the ipcm delivers this request

Fig. 10. Linux kernel and IPCM modules hierarchy.



hardware. To be able to distinguish ip–Cores both by their type and by a
unique identier, we adopted the rule to consider the 4 most significant bits
of the device minor number as identifier of the device type (indicating the
associated driver), and the other 4 bits as device identifier within the driver.
This means that there can be up to 16 drivers, each managing 16 ip–Cores.

Driver modularity Since the ip–Cores all use memory mapping to communi-
cate, the drivers managing them will be very similar, the main difference being
the functions performing reads and writes with the device and interrupts. Ac-
cording to this observation, a hierarchical architecture has been implemented to
manage the driver creation and implementation.

The proposed solution has been implemented as a sort of stub, as shown in
Figure 11. This simplifies the writing of ip–Core drivers, as the stub contains the
implementation of functions common to all drivers, such as module initialization
and shutdown, registration and deregistration with the ipcm. The main aim
of this process is to hide as much as possible the Linux kernel programming
interface, so that a user wanting to write a driver for an ip–Core does not need
to know all kernel programming details or the internal structure of the ipcm, but
has only to implement the specific functions complying to a simplified interface,
while the stub performs the linking with the corresponding system calls and
interfacing with the ipcm.

7 Test and results

The Caronte flow has been applied to the aes (Rijndael) algorithm to test
Caronte architectural features, such as the possibility of storing the reconfig-
uration data on the board without external resources.
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Fig. 11. IP–Core Manager and drivers structure.



The first phase of the analysis and partitioning of the system description has
been applied to the aes algorithms to obtain a first hw/sw codesign solution of
the entire system to test the proposed methodology. After that step we further
partitioned the hardware description of the system to obtain all the processing
elements needed as input by the Caronte flow.

We decided to adapt our execution model to be able to justify the reconfig-
uration approach using a model similar to the one proposed in [23]. The idea is
to iterate the execution of each BlackBox a certain number of times, and in such
a way to obtain “blocks” whose running time is comparable to the reconfigura-
tion time of other BlackBoxes, thus hiding reconfiguration overhead, as shown
in Figure 12.

Fig. 12. Execution model.

Let us show the details of the methodology on the Rijndael example. The
Rijndael algorithm is a succession of 4 basic operations that are iterated many
times. These operations are performed on a 128 bit block, called state, organized
as a 4×4 matrix of 8 bit elements.

elements and so all the BlackBox cores. Having all the cores means that we
are now ready to define all the hw–ssps for the algorithm. According to this
scenario the Caronte architecture chosen for the aes application is composed of
two BlackBoxes, BB1 and BB2, and of the Caronte Core, which in turn is made
up by all the static parts previously described. In this case we obtain the four
different hw–ssp that are shown in Table 1. Figure 13 shows a sample execution

Table 1. HW–SSP Description

hw–ssp Fix Module BB1 BB2

0 Empty Empty Empty

1 Caronte Core PE-A PE-B

2 Caronte Core PE-C PE-B

3 Caronte Core PE-C PE-D

4 Caronte Core PE-D PE-A

of the aes algorithm where the reconfiguration of a BlackBox has been hidden
by the execution of an already mapped one.
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After the sets identification phase [3], it is possible to identify all the processing



Fig. 13. AES Caronte execution.

The reconfiguration time for the first two BlackBoxes of the aes algorithm,
A and B, is not shown in Figure 13 since these two components are mapped as
the start–up configuration of the entire fpga.

Let us show the details of the methodology on a second example: the md5
algorithm. The md5 algorithm takes as input a message of arbitrary length and
produces as output a 128-bit fingerprint or message digest of the input.
The methodology allows the identification of two BlackBoxes, BB1 and BB2.
Also the Caronte Core, composed of the processor, the memory, the icap module
and all the other static parts previously described, is included in the design. In
this case we obtain six different hw–ssp that are shown in Table 2.

Table 2. hw–ssp Description

hw–ssp Fix Module BB1 BB2

0 Empty Empty Empty

1 Caronte Core PE-A PE-B

2 Caronte Core PE-C PE-B

3 Caronte Core PE-C PE-D

4 Caronte Core PE-E PE-D

5 Caronte Core PE-E PE-F

6 Caronte Core Empty PE-F

The access time to the memory, where all the difference bitstreams are stored,
has been obtained via a timing test: writing 32 bits of data takes 0.135µs, while
reading the same amount of data requires 0.020µs. Without considering the first
configuration bitstream, which implies a complete configuration of the fpga,
the comparison between the external reconfiguration and the embedded one are
shown in Table 3.
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Table 3. Embedded Vs External Reconfiguration

Action External Rec. Embedded Rec.

Rec. Time C block 14.558s 15.152ms

Rec. Time D block 14.597s 15.305ms

Rec. Time E block 14.560s 15.223ms

Rec. Time F block 15.482s 15.837ms

Also in this example the reconfiguration time for the first two BlackBoxes (A
and B) are not shown, as already said, because they are part of the starting up
configuration of the entire fpga.

The results for both the architectures are shown in Table 4.

Table 4. Tests

Input #recs µ(Rec.T imes)
#BBs

µ(Exe.Times)
#BBs

md5 5 15.379ms 16.765ms

aes 4 12.405ms 13.672ms

Column 2 lists the number of reconfigurations, recs, that have to be per-
formed in order to implement the complete architecture, while columns 3, and 4
list the average of the embedded reconfiguration time and of the recs execution
time, respectively.

8 Concluding Remarks

Preliminary results show that the Caronte methodology, implementing a module–
oriented approach based on an edk system description, provides an effective and
low cost approach to the partial dynamic reconfiguration problem. Its strength
lies both on introducing the partial dynamic reconfiguration degree of freedom
at design time, and on the use of widely available tools. Also, the Linux driver
we have developed allows a simplified (and yet flexible and hierarchical) software
interface to hardware reconfiguration.

We are now working on a new version of the ipcm module that embeds the
ipcm, the icap and the Interrupt controller in just one module. This new module
will provide a single access point for the reconfiguration action both for the hw
and the sw side of the architecture, and will hence guarantee less area overhead
on the fpga.

We are also developing an automated version of the entire flow (addressing
problems such as task scheduling and task partitioning, which are now only
semi–automated) able to define all reconfiguration bitstreams, transforming the
input description into vhdl code that will define the core of each BlackBox and
hence producing all the hw–ssp’s.
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Abstract. This paper presents a new approach for monitoring and estimating 
device reliability of nanometer-scale devices prior to fabrication. A four-layer 
architecture exhibiting a large immunity to permanent as well as random 
failures is used. A complete tool for a-priori functional fault tolerance analysis 
was developed. It is a statistical Monte Carlo based tool that induces different 
failure models, and does subsequent evaluation of system reliability under 
realistic constraints. A structured fault modeling architecture is also proposed, 
which is together with the tool a part of the new design method where 
reliability is considered as a central focus from an early development stage. 

1 Introduction 

The advent of embedded systems applied in safety-critical fields such as in-situ 
medical prosthetic microelectronic circuits or space applications where maintenance 
or repair is hardly affordable demands increased reliability at the system level. Fault-
tolerant computing has offered solutions at different abstraction levels of the 
integration to address this problem. For example, triple redundancy (TMR) with 
majority voting has been successfully applied in industrial applications, mostly 
considering a fairly large definition of the system to be replicated (computer, or large 
parts of microprocessors). However, dramatically different and new approaches may 
be needed to properly address the demands of such critical systems, which will be 
fabricated using nano technologies in the near future [1]. 

Nanometer-scale devices include currently available deep-submicron CMOS 
technologies with feature sizes of 65nm, future very-deep-submicron CMOS 
technologies with feature sizes ranging down to 50nm, as well future nanoelectronic 
devices based on quantum physics and exhibiting typical feature dimensions below 
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20nm. Leading CMOS technologies as well as future ones suffer from the dramatic 
dimensional scaling which impacts on the proper operation of individual transistors, 
showing up as current leakage, hot electron degradation, and device parameter 
fluctuations. Moreover, future systems based on nanoelectronic devices are expected 
to suffer from low reliability due to the constraints imposed by the fabrication 
technologies, and due to nondeterministic parasitic effects such as background 
charge, which may disrupt correct operation of single devices both in time and space 
in a random way. 

1.1 Reliability issues to be tackled in very-deep submicron and nanoelectronic 
technologies 

New architectural concepts need to be developed in order to cope with the high 
level of device failure expected to plague nanoelectronic circuits. The basic approach 
to deal with significant device failure was suggested in the pioneering work by Von 
Neumann [2] who used majority logic gates as primitive building blocks and 
randomizing networks to prevent clusters of failures from overwhelming the fault 
tolerance of the majority logic. However, this approach does not offer a satisfying 
solution in case of a high-density of failure. 

Hence, new approaches of system reliability must be considered: 

• the granularity of fault-tolerant “islands” must be increased, in order to 
account for random device failure, in space and in the time domain, as well as 
transient errors to occur in a very dense space; 

• support for a-priori estimation of the required redundancy with respect to the 
desired probability of correct operation must be provided, taking into account 
realistic failure models for several types of disruptions in order to correct 
transistor operation. 

The granularity at which the cell size should be considered must be adapted to 
new rates of failure densities that occur in nanoscale technologies. Typically, several 
failures may affect a relatively small area. Consequently, the typical size of a cell 
must be reduced in order to guarantee that errors can be accommodated using proper 
hardware post-processing. Fault-tolerance at hardware level must handle Boolean 
gates or extended Boolean gates consisting of typically less than one hundred 
transistors. 

A four-layer fault-tolerant hardware architecture is used in order to offer a 
solution to the previously presented issues [3]. The architecture described in the 
following has been applied at the gate, or extended gate level. It can be applied 
hierarchically in a bottom-up way, and combined with other high-level fault 
absorption techniques. Data flows in a strictly feed-forward manner through four 
layers. The input terminals are located in the first layer, and can accommodate binary 
or multiple-valued logic inputs. The second layer consists of a number of redundant 
Boolean units that process the expected system function. The redundancy factor R 
can be adapted to the desired reliability level. The third layer consists of an 
averaging and rescaling hardware unit that performs a weighted average of the 
second layer outputs, and range compression of the result. The output of the third 
layer is in the form of a multiple-valued logic function, where the number of possible 
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states equals to R+1. The fourth layer is a threshold unit used to extract a binary 
output from the third layer output signal. The details of this architecture have already 
been presented by the authors in earlier publications [3, 4]. 

In the following, a methodology for integrated circuit design with highly 
unreliable nanometric devices is presented. This methodology uses a developed 
statistical Monte Carlo (MC) based tool that induces different failure models from 
structured fault modeling architecture, and a four layer circuit architecture as 
proposed. The application of the tool demonstrates the validity of the fault-tolerant 
architecture, as well as the validity of the approach itself.  

2 Reliability assessment approach and defect modeling 

2.1 Problem description 

The theoretical yield analysis has been conducted in the case of regular CMOS 
technology [5]. The negative binomial distribution is generally adopted to model 

consideration, and the availability of process-related statistical 
parameters. Due to the lack of experience in the large-scale integration of nanometric 
devices, and the study of the failure modes of these devices, no fault distribution 
model accounting for fabrication-related faults and run-time permanent or transient 
faults has been made available yet. Nevertheless, a-priori knowledge of the 
probability of correct operation is very desirable. To guarantee a correct result, the 
density of defect in a time-limited interval must be known.  

This practically means involving probability of correct operation as a crucial 
parameter in integrated circuits (IC) design methodology. The justification lays in 
the fact that building a completely fault-free design using future state-of-the-art 
technologies becomes extremely costly (if not virtually impossible), in the case of 
high device fault density. Hence, the wafer-level chip yield models commonly used 
in CMOS industry must be adapted to reflect block-level error probability in order to 
construct a relevant metrics for circuit-level optimal redundancy evaluation. 

In order to acquire information related to the probability of a correct operation of 
a system under development, an appropriate tool, as well as a realistic device fault 
models, are needed.  

2.2 A layered fault model 

Device fault modeling has proven to be a complex problem even under the 
assumption of wafer-level consideration. Two approaches are mainstream in device 
fault modeling [6], namely: i) inductive fault analysis (IFA) [7], and ii) transistor 
level fault modeling [8].  

The IFA approach is a systematic method for determining which faults are likely 
to occur in a VLSI circuit, taking into account the circuit fabrication technology, 
fabrication defect statistic, and physical layout. Software tools have been developed 
to partially automate the process of creating a list of possible faults and ranking them 
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clustered fault distribution due to the manufacturing defects, under the assumption  
of wafer-level 
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according to their probability of occurrence. They perform circuit analysis by using a 
Monte Carlo simulator to place random spot defects on a circuit layout. After this 
process, defects causing electrical faults are determined from the process technology 
description. 

Transistor-level fault modeling is applied at an abstraction level above physical 
layout. Stuck-on, stuck-off models of transistors are used to represent faults. These 
models represent only a very reduced set of possible physical defects and are 
consequently not sufficient. On the other hand, the IFA approach has some 
drawbacks, mainly related to the high computational complexity of used tools, the 
complete dependency on geometrical characteristics and the difficulty to handle 
irregularity in analog layout. 

A layered fault modeling is proposed in this paper in order to overcome shortfalls 
of transistor-level fault modeling, using some results of the IFA approach, and  
covering a significant range of impacts that device faults have on the circuit 
behavior. The model is divided in three hierarchical layers combining parameters 
and circuit modeling as shown in Figure 1. 

Fig. 1. Proposed tree-layer fault model 

The first layer consists of transistor model parameters (e.g. threshold voltage Vth, 
oxide thickness tox, different capacities, geometric parameters L, W) whose variation 
have a main influence on the dynamic behavior and can lead to “dynamic” faults, or 
violation of design time constraints. Here, each parameter can be represented by its 
distribution function fi(…) and nominal value as a mean value. 

An “improved” transistor-level fault model builds the second level. Models for 
various physical defects [8] such as missing spot, unwanted spot, gate oxide short 
(GOS) with channel, floating gate coupled to a conductor, and bridging faults have 
been implemented. These models have been developed from structural and 
lithography defects. Each layer or a combination of layers within the defect site is 
represented by its electrical equivalent. For example, a missing spot is represented by 
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a subcircuit consisting of a high impedance resistor in parallel with a small capacitor. 
A low impedance resistor represents an extra spot that causes a short [6]. In the case 
of a Gate-Oxide Short (GOS) with the channel, the n+ spot in the p-type channel is 
represented by a p-n diode. The part of the channel neighboring the defect is 
modeled by two small MOS transistors with different threshold voltages [9, 10]. 

At the transistor level of abstraction, each defect model is described in terms of 
electrical parameters of its components as model variables rather than in terms of 
physical or material properties of the defect site. The parameters of the model 
components have been tuned to the statistical and/or experimental data taken from  
defective integrated circuits, or by using IFA. Thus, for simulation purposes, 
physical defects are translated into equivalent electrical linear parameters such as 
resistors, capacitors and nonlinear devices (diodes and scaled transistors). 

This comprehensive set of defects is injected in each NMOS and PMOS 
transistor [6, 11] by creating a transistor macro replacement circuit. A total of sixteen 
defects were considered for each transistor, roughly divided in two classes: hard and 
soft faults, depending on the values used for resistors representing missing and 
unwanted spots. 

The third layer in the fault model represents mapping of interconnection defects 
into their electrical models, consisting of open spots and bridging faults [12]. This is 
highly dependent on geometrical characteristics of layout, where maintaining 
correspondence between physical and electrical parameters remains as a problem 
that needs to be solved. 

3 EDA tool for statistical analysis 

3.1 Methodology 

The granularity at which the cell size – or cell blocks - has to be considered must 
be adapted to high rates of failure densities that occur in nanometer-scale 
technologies. Moreover, the proposed design methodology for architectures made of 
unreliable components provides information related to the probability of correct 
operation of blocks under development, and typically consisting of less than one 
hundred transistors as a granularity unit. 

The occurrence of faults dictates a number of states in which a MOS transistor, 
constituting element of a block, can be found. Let ε be the number of faults, and n 
the number of transistors under consideration. The total number of system states Np 
is given as ( 1)n! + . For a full statistical coverage it is possible to consider a limited 
number of cases, given that the redundancy in the logic layer does cause a number of 
cases to appear as identical in their DC transfer function, and also taking into account 
that faults are not totally statistically independent. This does not hold true if we 
consider the actual circuit, where systematic and random effects affect the duplicated 
blocks in a non-conform way. Nevertheless the actual number of states is 
exponentially dependent on the number of transistors. 

However, even if rules describing the distribution of faults were available, a 
complete theoretical expression of fault probability would be intricate to derive. The 
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used redundancy scheme (explained in Introduction) does not allow to extract a 
simple reliability rule, such as a majority rule applied in TMR systems. In the case of 
the four-layer architecture, every system state corresponds to an individual 
combination of transistor states that manifest themselves as degenerated DC transfer 
function surfaces, some of which still operate correctly. Simulation and subsequent 
analysis of every state is needed to extract statistical information. 

In cases where the number of transistors in every block, and the redundancy 
factor is limited, manual simulations are possible. As mentioned earlier, the number 
of system states grows exponentially, and thus, the cases where this method applies 
are restricted. 
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majority voting 
 
The first step consists in extracting a rule set, which describes the combinations 

of transistor states allowed for correct circuit operation. Assigning each transistor a 
failure distribution probability allows deriving the probability of correct system 
operation as a sum of products of probabilities, to be defined according to the 
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redundancy of (a) R=2, and (b) R=3, showing the improved performance with respect to 
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previously extracted rules. Figures 2(a) and (b) show the reliability analysis obtained 
by rule check of randomly generated fault patterns. 

The described method could be used together with limited software support only 
for smaller, theoretical cases. All cases where larger Boolean networks are involved 
require a different approach.  

A tool based on Monte Carlo (MC) analysis was created for the purpose of 
deriving the probability of correct block operation, under various block sizes, 
redundancy factors, failure types, and a varying number of errors affecting the block. 
The fault-tolerant synthesis of the NOR Boolean operator circuit was considered in 
the following as a demonstrative example allowing easy visualization and 
understanding in a two-input and one-output variables space. This is not a limitation 
of the proposed method and developed tool can handle higher input space variable 
count. An example of this is given in the followin. The technology used in the 
simulations is UMC 0.18µm digital CMOS with 1.8V supply voltage. 

Instead of extraction of the set of rules that dictates the correct operation, SPICE 
DC simulation in a multi-dimensional space is used, although there are no tool 
restrictions in applying any other type of analysis. The first two layers of the failure 
model, described in the previous Section, are incorporated as SPICE models of the 
transistors that are expected to be prone to errors.  

In each MC iteration, the appropriate model is assigned to each transistor 
according to the probability distribution of the faults. Here a failure model state is 
actually considered as the Monte Carlo variable. Then a multivariable DC sweep 
analysis for the acquired circuit netlist is executed, thus forming the transfer function 
surfaces for the considered block under failure analysis. Subsequent Monte Carlo 
iterations are run applying different failure patterns performing sweep analysis in the 
probability space. The tool automatically generates proper netlists in each MC 
iteration and executes them using Cadence SPECTRE simulator. 

Subsequently, all simulation results are processed to discriminate among the 
faulty transfer function surfaces those which can be further thresholded using the 
fourth layer in order to recover proper circuit behavior. Finally, the related 
probability of correct operation with respect to probability of fault of a single 
transistor is calculated. 

Fault distribution models adapted for nanometric technologies require monitoring 
of actual devices in mass production. The feasible models relate to the technologies 
available and do certainly not take into account all necessary parameters. The 
computational load shows an exponential dependency with the number of input 
variables as well as faulty states. 

However, in case of Monte Carlo based approach, the computational load is 
exponentially dependent only on number of input variables; specifically, it is not 
dependent on number of faulty states and fault modeling parameters. Moreover, 
faulty states and fault modeling parameters have a limited impact on single iteration 
time in order of logarithmic proportion. This is an important advantage of the Monte 
Carlo based approach over any purely theoretical design approach. 

The total time of simulations to be run is expressed in Equation 1. 
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       (1) 

Here, N_sp is the number of sweep points for each variable, N_var number of 
input variables, N_it number of MC iterations, N_prob number of probability 
iterations, T_it time for one iteration and ε number of different simulated fault states, 
as mentioned before. 

The condition for accepting or rejecting the transfer function surface resulting 
from one iteration of the Monte Carlo simulation is dictated by the possibility to 
place a threshold value Vth and its associated tolerance interval in a way that permits 
a correct separation of Logic 1 and Logic 0 outputs, as illustrated in Figure 3(b). 

The acceptance condition for a transfer function surface to be considered as 
correct, despite of any errors in the circuit, can be limited to critical intervals dictated 
by the input noise margin of the next stage, i.e. it is not necessary to check over the 
full search space. The electrical meaning of the acceptance condition is depicted in 
Figure 3(a) where one DC sweep for one Monte Carlo iteration is shown. 

The output of the third layer is called VSGN ; VOH and VOL are the output noise 
margins, VIH and VOH are the input noise margins. VTH is the fourth layer threshold 
value to which ± VTH is attached to form a sensitivity interval. Critical intervals as 
depicted in Figure 3(b), are determined by [VDD, VIH] and [VIL, GND] in which the 
signal VSGN must comply with the acceptance condition expressed in Equation 2. The 
value of VSGN outside of critical regions is not relevant.  

 
 
 
 
 

(2) 
 
 
 
 
 
 

 3.2 Analysis results 

Figure 4 shows simulation results for a total failure rate of 0.23, and uniform 
distribution of the individual transistors faults. Correct operation of the NOR gate 
with triple redundancy is shown in Figure 4(a). Figure 4(b) shows the distorted 
transfer function surface which results from four faults introduced in the circuit and 
the optimal VTH derived for the case where correct operation can be recovered at the 
output of the fourth layer. Figure 4(c) shows the critical intervals considered, and 
Figure 4(d) the corresponding error surface. 

 

      0

       
|

|

and ,
|

|

,,,

,

max,,

,

min,,

!"=

#
#
#

$

%

&
&
&

'

(

)*+=

)*+=

#
#
#

$

%

&
&
&

'

(

!*"=

!*"=

))

))

))

))

LTHHTHrangeTH

THTH
VVVOLLTH

THTH
VVVSGNLTH

THTH
VVGNDOHHTH

THTH
VVGNDSGNHTH

VVV

VVVV

VVVV

VVVV

VVVV

DDinputIH

DDinputIH

ILinput

ILinput

118

Δ



Reliability Enhancement of Nanometer-Scale Digital Systems 

 

V
IL

V
IH

V
OL

V
OH

V
DD

V
DD

V
TH

V
TH

+!V
TH

V
TH

-!V
TH

V
OH

-!V
TH

V
SGN,max,IH

+!V
TH

GND

GND

Input variable sweep range [V]

O
u

tp
u

t 
v
a

ri
a

b
le

 s
w

e
e

p
 r

a
n

g
e

 [
V

]

V
TH,range

V
SGN

 
(a) 

V
DD

V
DD

GND

GND

Input variable 1 sweep range [V]

In
p

u
t 

v
a

ri
a

b
le

 2
 s

w
e

e
p

 r
a

n
g

e
 [

V
]

Output variable sweep range [V]

 
(b) 

 
Fig. 3. Discrimination of correct transfer function surfaces. (a) Determination of Vth, and (b) 
critical regions 
 

In Figures 4(e) and 4(f), ideal and distorted transfer function surfaces are shown, 
respectively, where the 4-input variables into 1-output variable mapping of the 
following complex Boolean function is given in Equation 3. 

f (x1, x2 , x3, x4 ) = x1x4�  +(x2 x3)�  + x1(x2x3)�  + x1� x2 x3x4,                  (3) 
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In the actual implementation of Equation 3, three identical function blocks are 
used in the second layer, to ensure robust operation. The number of transistors 
needed to synthesize f (x1, x2, x3, x4), i.e. the number of transistors in each function 
block, is 45. The entire circuit with three identical units in the second layer has a 
total of 135 transistors. In the typical case shown here, 18 out of these 135 devices 
are allowed to fail. Correct output function surface is possible to be reconstructed in 
cases where device failure rate does not exceed 15%. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
The analyses for different redundancy factors have been undertaken and are 

depicted in Figure 5 for 2-input NOR gate, showing high correlation with the results 
obtained using the rule set extraction method described earlier. On Figure 6, the 
same analysis is performed considering the complex 4-input function of Equation 3. 
In accordance with the method described above, the horizontal axis shows the 
probability of failure applied to each individual transistor. 
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Fig. 4. Simulation of transfer function surfaces. 2-input NOR gate (a) correct operation, 
(b) distorted transfer function surface, and fourth layer threshold value, (c) critical intervals
considered, (d) error surface.  4-input complex function gate (e) correct operation, 
(f) distorted transfer function surface, and fourth layer threshold value
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Selecting the appropriate number of Monte Carlo iteration proves to be a critical 

issue, where a balance must be found between the need of a significant statistical 
population and the computational load.  

The number of MC iterations (in this case sample size – Ns) represents a subset of 
total number of states (in this case population size – Np). The accuracy (or error 
bound) of the estimated coverage depends on the absolute number of states in the 
sample (sample size) and can be enhanced by increasing the sample size. The exact 
probability of correct operation that must be determined is represented by the 
population fraction R, that is a ratio between the number of working states and the 
number of randomly collected states in a sample (Ns). If r is a random variable 
representing the probability of correct operation, and x is an estimated value of R 
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Fig. 5. Analysis of the 2-input NOR gate with redundancy of 2, 3 and 5 

Fig. 6. Analysis of the 4-input complex gate with redundancy of 3 and 5 
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determined by Monte Carlo simulation, than the number of ways to obtain the 
sample is given as 
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This represents the hypergeometric probability density function of a discrete-valued 
random variable r. When Ns is large, r can be treated as a continuous variable and 
previous equation is conventionally approximated by a Gaussian probability density 
function with mean, ε(r) = R, and variance σ2, as expressed by 
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Here R represents the true probability of correct operation, as the mean (or an 
unbiased estimate) of r. The variance of r is given according to [13] as 
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For example for R=0.5 only 1000 Monte Carlo iterations (Ns=1000) are necessary to 
guarantee an error smaller than 1.5%.  

The results for the NOR gate under triple redundancy and using the fault-
absorbing four-layer architecture are depicted in Figure 7, where a selection of 
various Monte Carlo iterations have been applied. The resulting curves were 
processed using adjacent averaging on five points. High correlation between the 
resulting curves is observed, and confirms the expression derived in Equation 4. 

  
(a) (b) 

 
Fig. 7. Analysis of the 2-input NOR block considering (a) 50, and (b) 500 MC iterations 
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Moreover, the assumption of fully random occurrence of faults has been made in 
the simulations depicted on Figure 7. All transistors may be defective, including 
output layers. The benefit of a high immunity to faults that could be demonstrated 
under probabilities of failure of each transistor up to 0.2 is clearly degraded. The 
proposed four layer architecture must be adapted in order to recover the level of 
performance depicted in Figure 2 and Figure 5 using a fully differential circuit 
realization, combined with redundant output layers. Finally, random geometrical 
occurrence of faults has been assumed in this paper; nevertheless, a certain level of 
clusterization of the faults would display increased performance, under a given 
global defect density. 

4 Proposed design methodology 

The proposed architecture and method allow the a-priori estimation of the system 
reliability. Setting the appropriate value of the redundancy factor allows optimizing 
the extra silicon area, which is required to provide increased reliability.  

Considering that variable threshold in the fourth layer of the used architecture is a 
necessity, an appropriate method allowing the auto-adjustment of the threshold 
voltage is very desirable. Incorporating adjustment mechanisms into every fault-
tolerant Boolean gate would require a large amount of extra hardware. One possible 
way could include local malfunction detection, and report to a central control unit, 
which selectively applies learning algorithms inspired from artificial neural network 
theory to adapt the threshold and restore correct operation.  

A synthetic diagram of the design methodology which is proposed in application 
of the aforementioned fault-tolerant principles is depicted in Figure 8. 

The last step called statistical analysis has not been discussed in this paper. It 
should span the difference between design methodology for nanodevices and 
existing design methodologies that are dealing with “micro” scale CMOS devices. 

In this step, the probability of correct operation of a unit block is taken into 
account and after appropriate statistical analysis a proper level of redundancy as well 
as a proper circuit topology is chosen.  

This new methodology takes as a central concept step the creation of libraries of 
reliable components. The probability of correct operation is a fundamental property 
of each element in a library. 

From an end-user’s point of view, the design approach should not differ 
significantly from standard design flows. It is justified to say that a new method-
ology should represent an upgrade of the existing one. 

5 Conclusion 

In this paper, a method has been proposed for a-priori assessing the reliability of 
microelectronic systems. The four-layer architecture is used for increased fault-
tolerance, and results with different levels of redundancy and error rates are 
presented. 
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The major advantages of this are expressed as: 

• the reliability of a system with block redundancy, and the complex rule set of 
acceptable faults can be estimated prior to integration; 

• arameters required to restore correct operation can be extracted from 
simulations. 

The redundancy factor can be adapted to the expected fault coverage, allowing 
adjustment of the silicon surface and power dissipation tradeoff. 
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Abstract. Power grid analysis has recently risen to prominence due to
the widespread use of lower supply voltages by power-conscious designs.
Low supply voltages imply smaller noise margins and make the voltage
drop across the power grid very critical since it can lead to overall slower
circuits, signal integrity issues and ultimately to circuit malfunction.
Verifying proper behavior of a power grid is a difficult task due to the
sheer size of such networks. The usual solution to this problem is to
apply reduced-order modeling techniques to generate a smaller macro-
model. These techniques are typically based on projections to subspaces
whose dimension is determined by the input space. Unfortunately power
grids are characterized by a massive number of network ports, which
limits the amount of compression achievable. Recently, new algorithms
have been proposed for solving this problem which may provide efficient
alternatives. In this paper we discuss the main issues related to model
reduction of power grid networks and compare several methods for such
reduction, providing some insight into the problem and how it can be
tackled.

1 Introduction

Power dissipation is widely recognized as the greatest challenge to the con-
tinuing trend for higher performance fueled by technology scaling, increased
functionality, and competitive designs. Increased chip functionality results in
the need for huge power distribution networks, also referred to as power grids.
A common technique to lower power consumption in such designs is to scale
down the supply voltages, since chip power is roughly proportional to the square
of the supply voltage. However, lower supply voltages imply smaller noise mar-
gins and make the voltage drop across the power grids very critical since it can
lead to reduced noise margins and overall slower circuits. Once voltage drops
exceed designer-specified thresholds, signal integrity violation occurs and circuit
functionality is compromised with obvious yield consequences. Reduced noise
margins may induce false switching and higher logic gate delays. This may di-
rectly cause chip failures or simply slow down the circuit enough so that timing
requirements cannot be met.

Verifying proper behavior under realistic operating conditions requires ac-
curate power grid analysis. However, analyzing power grids is a monumental
task due to their sheer size which all but precludes direct usage in standard
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simulation environments. A possible solution to this problem is to compress the
model using a model reduction technique. Model order reduction (MOR) algo-
rithms are the backbone of contemporary parasitic and interconnect modeling
technologies. These algorithms take as input a linear interconnect model and
produce as output a smaller model that is suitable for simulation in conjunc-
tion with nonlinear circuit elements. The effectiveness of the model reduction
algorithm is judged by the decrease in the reduced circuit simulation time, com-
pared to simulation with the full model, assuming acceptable error is incurred
in the modeling process. MOR algorithms rely on the fact that on a variety
of contexts only an accurate approximation to the input-output behavior of a
dynamic linear system is necessary [1, 2, 3]. This is true for instance for de-
lay analysis since only the waveforms at the gate inputs and outputs matter.
Therefore even if one has to account for interconnect effects, the precise time-
variation at any interconnection point is not relevant unless such point is a gate
input or output. It is quite typical for MOR techniques to be able to reduce
large RC(L) interconnect networks with just a few ports to models with very
few states and still produce very accurate approximations of frequency- and
time-domain behavior. In other words, even if the number of internal states, n,
is very high, the description of the multi-port network is an q×p matrix valued
transfer function where p, q � n and typically only a few states are necessary for
the required accuracy. The compression ratio is therefore quite high. Of course,
it is reasonable to expect that when the number of ports increases, then the
number of states to be retained must also increase since, in a simplified sense,
that means we now care for an increasing number of internal points/states (i.e.
p or q above increase). Ultimately, however, as the number of ports increases,
the model must be able to accurately characterize the interaction between all
input and output ports. If the number of retained states keeps increasing, this
appears to leave little room for compression as the size of the matrix transfer
function that characterizes all port interactions, O(q × p), also increases and
may approach the complexity of working with the original network equations.
In Section 4 we will verify this relation in a precise manner and discuss its impli-
cations. Nevertheless, it is important to understand the reasons behind this loss
of efficiency since knowledge of the specific scenarios where each method may
produce better results is an important asset when determining how to perform
the reduction.

Recently, the efficient reduction of systems with a large number of ports
has been addressed and several methods have been proposed [4, 5, 6, 7]. In
this paper we discuss the main issues related to order reduction of power grid
networks and compare several methods for solving this problem, providing some
insight into the problem and how it can be tackled. In Section 2 we present
the standard model-order reduction methods that are now in widespread use
in many applications in several fields, including electronic design automation.
In Section 3 we discuss the newly proposed methods for handling massively-
coupled linear dynamic systems as well as alternative approaches which are
not based on projection schemes [8]. Then in Section 4 we present the problem
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of power grid reduction and discuss some of its characteristics. We analyze
the conditions in which it can be successfully reduced and the impact of an
increasing number of ports. We also discuss scenarios in which the reduction
might lead to better or worse compression ratios. In Section 5 we show results
from applying the various methods, in a variety of settings to the power grid
problem. Finally conclusions are drawn in Section 6.

2 Background

Model reduction algorithms are the backbone of contemporary parasitic and
interconnect modeling technologies. Projection-based Krylov subspace algo-
rithms, in particular, provide a general-purpose, rigorous framework for deriving
interconnect modeling algorithms. Another class of methods that is sometimes
used for model reduction and which finds its roots in systems and control the-
ory are related to balancing transformations of the system state description.
All of these algorithms take as input a linear interconnect model, and produce
as output a smaller model that is suitable for simulation in conjunction with
nonlinear circuit elements. The effectiveness of the model reduction algorithm
is judged by the decrease in final circuit simulation time, compared to simula-
tion with the full model, assuming acceptable error is incurred in the modeling
process.

Considering an RC network, the nodal analysis formulation leads to

Cv̇ + Gv = Mu
y = NT v

(1)

where C,G ∈ R
n×n are the capacitance and conductance matrices, respectively,

M ∈ R
n×p is a matrix that relates the inputs, u ∈ R

p to the states, v ∈ R
n,

that describe the node voltages, N ∈ R
n×q its counterpart with respect to the

outputs, y ∈ R
q, n is the number of states, p the number of inputs and q the

number of outputs. The matrix transfer function of the network is then given
by

H(s) = NT (G + sC)−1M (2)

The goal of model-order reduction is, generically, to determine a new model,

Hr(s) = N̂T (Ĝ + sĈ)−1M̂ (3)

that closely matches the input-output behavior of the original model, and where
the state description is given by z = VT v ∈ R

r, r � n. Note however, even if
r � n, the reduced-order model may still fail to provide relevant compression.
This may happen because, for large networks, the matrices C,G are very sparse,
having a number of non-zeros entries of order O(n). So, if the number of non-
zero entries in the reduced-order model increases for instance with the number
of ports, the benefits of reduction may vanish with increasingly large p and q.

In the following we review the standard model-order reduction techniques
in order to understand their basic modes of operation.
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2.1 Projection-Based Framework

Projection-based algorithms such as PRIMA [3], or PVL [9], have been shown
to produce excellent compression in many scenarios involving on- and off-chip
interconnect and packaging structures. The PRIMA algorithm [3] reduces a
state-space model in the form of (1) by use of a projection matrix V, through
the operations

Ĝ = VT GV M̂ = VT M Ĉ = VT CV N̂ = VT N (4)

to obtain a reduced model in the form of (3). In the standard approach, the V
matrix is chosen as an orthogonal basis of a block Krylov subspace, Km(A,p) =
span{p,Ap, · · · ,Am−1p}. A typical choice is A = G−1C,p = G−1M. The
construction of the projection matrix V is done in an iterative block fashion,
with each block i being the result of back-orthogonalizing Ai−1p with respect
to all previously computed blocks. When the projection matrix is constructed in
this way, the moments of the reduced model match the moments of the original
model at least to order m (in PVL, 2m+1 moments are matched). The difficulty
with these algorithms is that the model size is proportional to the number of
moments matched multiplied by the number of ports. For example, consider
the application of such an algorithm to a network with a large set of input
ports. If only two (block) moments are to be matched at each port, and the
network has 1000 ports, the resulting model will have at least 2000 states, and
the reduced system matrices will be dense. Therefore such methods are almost
impractical for networks with large numbers of input/output ports, that is, for
networks with many columns in the matrices defining the inputs. This is often
the case for such “massively coupled” parasitics networks as occur in substrate
and package modeling, as well as power grids.

2.2 Multi-Point Rational Approximation

An evolution of Krylov-subspace schemes are methods that construct the pro-
jection matrix V from a rational, or multi-point, Krylov subspace [10, 11, 12].
Compared to the single-point Krylov-subspace projectors, for a given model
order, the multi-point approximants tend to be more accurate, but are usually
more expensive to construct. Given N complex frequency points, si, a projection
matrix may be constructed whose i-th column is

zi = (G + siC)−1M (5)

This leads to multi-point rational approximation. Multi-point projection is
known to be an efficient reduction algorithm in that the number of columns,
which determines the final model size, is usually small for a given allowable
approximation error, at least compared to pure moment matching approaches.
Of course there are many practical questions to ponder in an actual implemen-
tation, namely how many points si should be used, and how should the si be
chosen. Lack of an automatic procedure to solve these problems has limited the
applicability of the methods.
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2.3 Truncated Balanced Realization (TBR)

An alternative class of reduction algorithms are based on Truncated Balanced
Realization (TBR) [13, 14]. The TBR algorithm first computes the observability
and controllability Gramians, X,Y, from the Lyapunov equations

GXCT + CXGT = MMT , (6)

GT YC + CT YG = NT N (7)

and then reduces the model by projection onto the space associated with the
dominant eigenvalues of the product XY [13]. Model size selection and error
control in TBR is based on the eigenvalues of XY, also known as the the
Hankel singular values, σr . In the proper case, there is a theoretical bound on
the frequency-domain error in the order r TBR model, given by [14]

‖H−Hr‖ ≤ 2
n∑

i=r+1

σi (8)

The existence of such an error bound is an important advantage of the TBR-
like class of algorithms. Unfortunately there is no counterpart in the projection-
based class of algorithms. Note that the model selection criteria does not depend
directly on the number of inputs. However, as we shall see, there is an indirect
dependence in most problems. In principle, it is possible to have a 1000-port
starting model, and obtain a good reduced model of only, say, 10 states, if
the G,C,M,N matrices are such that all but the the first few (10) Hankel
singular values are small. In practice, solution of the Lyapunov equations is
too computationally intensive for large systems as encountered in interconnect
analysis. Therefore, a variety of approximate methods [12, 15, 16] have been
proposed.

3 Massively-Coupled Problems

In the previous section we briefly summarized the main techniques for model or-
der reduction of linear interconnect networks currently in use. As discussed, the
projection-based techniques, like PVL or PRIMA present two problems when
dealing with networks with a large number of ports. First, the cost associated
with model computation is directly proportional to the number of inputs, p, i.e.
to the number of columns in the matrices defining the inputs. This is easy to
see by noting that the number of columns in the projection matrix V in (4) is
directly proportional to p (a direct result of the block construction procedure).
This implies that model construction for systems with large number of ports is
costly. Furthermore, the size of the reduced model is also proportional to p, as
was discussed earlier and can directly be seen from (4). While the cost of model
construction can perhaps be amortized in later simulations, the large size of the
model is more problematic since it implies a direct penalty for such simulations.
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This is often the case for such “massively coupled” parasitic networks as oc-
cur in substrate, package, power grids or clock distribution networks. Massively-
coupled problem are problems for which the system description contains a very
large number of ports. In this section, we summarize two recent methods aimed
at solving some of the issues related to reduction of such systems.

3.1 Singular Value Decomposition MOR (SVDMOR)

The SVDMOR [4] algorithm was developed to address the reduction of systems
with a large number of ports, like power-grids . While the size of a reduced
model produced via PRIMA is directly proportional to the number of ports in
the circuit, SVDMOR theoretically overcomes this problem using singular value
decomposition (SVD) analysis in order to truncate the system to any desired
order.

The main idea behind SVDMOR is to assume that there is a large degree of
correlation between the various inputs and outputs. SVDMOR further assumes
that such input-output correlation can be captured quite easily from observa-
tion of some system property, involving matrices M and N. The method can,
for instance, use an input-output correlation matrix, like the one given by the
zero-th order moment matrix SDC = NT G−1M, which contains only DC in-
formation. Alternatively more complicated response correlations can be used

such as a zero-th order, sj-shifted moment, S
(sj)
DC = NT (G + sjC)−1M, a more

generic k-order moment, Sr = NT (G−1C)kG−1M, or even combinations of
these. If we let B be the appropriate correlation matrix, and if the basic corre-
lation hypothesis holds true, then B can be approximated by a low-rank matrix.
This low rank property can be revealed by computing the SVD of B,

B = UΣWT (9)

where U,W are orthogonal matrices and Σ is the diagonal matrix containing
the ordered singular values. Assuming correlation, there will be only a small
number, r � p + q, of dominant singular values. Therefore

B ≈ UrΣrVT
r (10)

where truncation is performed leaving the r most significant singular values.
The method then approximates:

M ≈ bmVT
r = MVr(V

T
r Vr)

−1VT
r

N ≈ bnUT
r = NUr(U

T
r Ur)

−1UT
r

(11)

where bm and bn are obtained using the Moore-Penrose pseudo-inverse, result-
ing in:

H(s) ≈ Ur bT
n (G + sC)−1bm

︸ ︷︷ ︸

Hr(s)

VT
r (12)
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Standard MOR methods, like SyMPVL [17] or PRIMA, can now be applied to
Hr(s), resulting in the final reduced model:

H(s) ≈ Hr(s) = UrH̃r(s)V
T
r (13)

In our implementation we used PRIMA to obtain Hr(s). The final reduced
system is p × q with a number of nonzero elements of order O(r2).

3.2 Poor Man’s TBR (PMTBR)

The PMTBR algorithm [7, 6] was motivated by a connection between frequency-
domain projection methods and approximation to truncated balanced realiza-
tion. The method is less expensive in terms of computation, but tends to TBR
when the order of the approximation increases. The actual mechanics of the
algorithm are akin to multi-point projection, summarized in Section 2.2. In
a multi-point rational approximation, the projection matrix columns are com-
puted by sampling in several frequency points along a desired frequency interval

zi = (G + siC)−1M (14)

where si, i = 1, 2, . . . , N , are N frequency sample points. The frequency-
sampled matrix thus obtained can then be used to project the original system
in order to obtain a reduced model.

In the PMTBR algorithm, a similar procedure is used. The connection to
TBR methods is made by noting that and approximation X̂ to the Gramian X
can be can be computed as

X̂ =
∑

i

wiziz
H
i (15)

where si = jωi and the ωi and wi can be interpreted as nodes and weights
of a quadrature scheme applied to a frequency-domain interpretation of the
Gramian matrix (see [7] for details). If we let Z be a matrix whose columns are
the zi, and W is now the diagonal matrix of the square root of the weights,
Eqn. (15) can be written more compactly as

X̂ = ZW2ZH (16)

If the quadrature rule applied is accurate, X̂ will converge to X, which implies
the dominant eigenspace of X̂ converges to the dominant eigenspace of X . If
we compute the singular value decomposition of ZW.

ZW = VZSZUZ (17)

with SZ real diagonal, VZ and UZ unitary matrices, it is easy to see that VZ

converges to the eigenspaces of X, and the Hankel singular values are obtained
directly from the entries of SZ . VZ can then be used as the projection matrix
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in a model order reduction scheme. The method was shown to perform quite
well in a wide variety of settings [16].

An interesting additional interpretation, and quite relevant for our purposes,
was recently presented [6]. It has been shown that if further information reveal-
ing time-domain correlation between the ports is available, a variant of PMTBR
can be used that can lead to significant efficiency improvement. This idea is akin
to the basic assumptions in SVDMOR and relate to exploiting correlation be-
tween the inputs. Unlike SVDMOR, however, it is assumed that the correlation
information is not contained in the circuit information directly, but rather in
its inputs. In this variant of PMTBR, a correlation matrix K is formed by
columns which are samples of port values along the time-steps of some interval.
Those samples, should characterize as well as possible the values expected at
the inputs of the system, i.e. K should be a suitably representative model of
the possible inputs. An SVD is then performed over K in order to retain only
the most significant components of the input correlation information:

K ≈ UKΣKVT
K (18)

With this additional correlation information, the samples relative to multi-point
approximation become:

zi = (G + siC)−1MUKΣK (19)

Using the zi above as columns of the Z matrix in (16) leads to the input-
correlated TBR algorithm (ICTBR). See [16] for more details and a more thor-
ough description of the probabilistic interpretation of both PMTBR as well as
ICTBR.

3.3 Time Constant Equilibration Reduction (TICER)

TICER [8] is an RC model reduction method that behaves in a very efficient
way. Model extraction tools usually obtain lumped element parasitics based
on local changes in geometry. The resulting models have a huge variety of
dynamics which can be reduced by TICER. This method analyzes the time
constant associated with each extracted net and eliminates the ones with a
time constant outside a given interval. This way, a realizable RC circuit which
maintains the original network topology is obtained.

The time constant associated with a node N of a circuit is given by:

τN =
χN

γN

=

∑

k ckN
∑

k gkN

(20)

where χN and γN are, respectively, the equivalent capacitance and conductance
seen by node N . χN is obtained by adding the capacitances between node N

and its neighbors, ckN , and γN is obtained by adding the conductances between
node N and its neighbors, gkN .
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From the point of view of the capacitors connected to a node N , if sχN �
γN , it is as if that node is floating and thus is considered a slow node. On the
other hand, if sχN � γN , the voltages of that node are at all times determined
to be in DC equilibrium with its neighbors, i.e., that node is always fully relaxed,
and is said to be a quick node.

With this is mind, TICER node elimination operates in two parts:

– If a node N is a slow node, it is eliminated and any pair of nodes (i, j)
previously connected to N are now connected by a conductance gij =

giNgjN

γN
.

Moreover, if nodes i and j had capacitances connected to N , connect these
nodes with a capacitance cij =

ciNcjN

γN
.

– If a node N is a quick node, it is eliminated and any pair of nodes (i, j)
previously connected to N are now connected by a conductance gij =

giNgjN

γN
.

Moreover, if node i had a conductance to N and node j had a capacitance
to N connect these nodes by a capacitance cij =

giN cjN

γN
.

In the elimination process, ground node is treated like the remaining neighbors
of the node to be eliminated.

The reduced model is an RC circuit and the output is passive, so stability
and DC characteristics are exactly preserved. Notwithstanding, the drawback
of this method is that when a node with n connections is eliminated those
connections disappear but n(n−1)

2 new connections appear. So, with TICER
node elimination, the number of elements grows quadratically while the number
of nodes decreases linearly. The method itself has linear complexity on the
number of nodes.

4 Power-Grid Reduction

Both the standard model order reduction as well as the methods described in
the previous section can be applied to massively coupled systems. Methods like
SVDMOR are reported to provide significant advantages over the standard al-
gorithms if certain conditions are met, namely that significant port correlation
exists and can be ascertained in a practical way. PMTBR is a more general
algorithm for model reduction, which can nonetheless be applied to large sys-
tems, given its reduced computational complexity. TICER, on the other hand,
acts in a way that is similar to node elimination in a direct solver procedure. It
can be used irrespective of the number of ports, but the resulting model tends
to become denser as more nodes are eliminated.

As stated previously, the difficulty with standard projection algorithms like
PRIMA or multi-point projection schemes, is that the models produced have
size proportional to the number of ports. This limits their applicability to prob-
lems such as power grids, where the number of network ports is likely to be very
large. An interesting question that might be raised is whether this restriction is
inherent to the system, given the number of ports, or an artifact of the compu-
tation scheme chosen. In order words, one might ask whether accurate modeling
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and analysis of a power grid, modeled as a large RC grid, does indeed require
so much dynamic information. This questions is all the more relevant as there
is a common popular belief that only a few poles are required to accurately
model an RC circuit. The roots of this problem are ancient and can be traced
back to other domains like timing simulation. Here one asked the question of
whether localized approximations of a node’s behavior could be used for speed-
ing up circuit simulation. It is now widely accepted that in certain settings that
is indeed the case, but this conclusion is not general (see [18] for a discussion
regarding simple RC models). Here a similar question is asked but now with
respect to the number of ports.

To get some insight into the problem, it is interesting to consider a simpli-
fied scenario of a power grid and examine its behavior as the number of ports
increases. Consider then a 20× 20 elements RC grid, representing a power net-
work, and consider that the grid’s inputs are positioned along the left side of the
grid. Furthermore consider increasing the number of inputs by attaching more
sources the the various grid nodes (i.e. adding more columns to M), again all
located at the left and assume that the same nodes are observed (i.e. NT = M).
As a proxy for system complexity, Figure 1 shows the TBR error bound from (8)
obtained from the Hankel singular values as a function of the number of inputs.
From the figure, we can see that indeed the order of the model required for ac-
ceptable accuracy grows with the number of inputs. Even in this simple setup,
for the 64-input case, low-accuracy (say 20%) still requires at least a model
with 120 states. A similar conclusion had been reached in [16] for the simpler
case of an RC line. This result, seems to put into doubt the possibility of being
able to perform model compression in such networks. Indeed, if 120 states (out
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Fig. 2. TBR error bounds for a 10 × 5 and a 10 × 50 RC grid with separated inputs
and output.

of a possible 400) are required for accuracy, then the chances of being able to
perform significant reduction are small.

Consider now Figure 2 where the TBR error bound is again plotted, but
now for two cases corresponding to a “thin” 10×5 and a “fat” 10×50 RC grids
where a fixed number of inputs was used. Obviously neither grid is realistic in
any way, but they serve the purpose of illustrating an important issue. Clearly
the “fatter” grid, where the inputs are further away from the outputs, is much
more compressible than the “thinner” grid. Indeed, for the “fatter” grid, only a
handful of states are required even for high accuracy. The “thiner” grid shows
the same behavior as before and seems fairly incompressible.

Figure 2 indicates that there is indeed hope for some reasonable reduction
to be achieved. It also indicates that whenever inputs and outputs are widely
separated, significant compression is possible. This is akin to the ideas of the
multi-pole algorithm developed for electromagnetic modeling and used for in-
stance in capacitance and inductance extraction. The effect on any point of a
cluster of faraway input sources is individually indistinguishable. The system
is therefore functionally similar to another one with just a few inputs. There-
fore, only a few states are necessary to capture the various dynamics and the
compression achievable is much greater. Unfortunately that situation is too re-
strictive for power grids in general, where ports are usually located all over the
grid. Furthermore, the more likely scenario is that one will at least want to
observe the potential at all grid nodes where inputs are connected (and thus
where current spikes may appear). In this case, it is expected that the com-
pression ratio will be small. Nevertheless, it is possible that high accuracy is
only really needed to model the effect of nearby sources, while far away sources
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Fig. 3. Setup for grid B.

can be modeled in a coarser way. In this case smaller or at least sparser models
should suffice.

5 Results

In this section we present results for reduction of power grids. Two types of
topologies were tested: a mesh with voltage inputs on the left side and current
outputs on the right one, which we term grid A, and a mesh with voltage ports
along the left side and current ports randomly distributed over the remaining
nodes, such as shown in Figure 3. We call this second setup grid B. There are two
main differences between these two setups. The first one concerns formulation.
While in grid A matrices M and N in Eqn. (1) are distinct (M yields input
information and N yields output information) in grid B we have M = N , thus
all ports are controllable and observable. The second main difference consists in
the separation between ports. Relating back to the discussion in Section 4, in
grid A the separation between inputs and outputs is maximal, while in grid B
not only every port is both input and output, but also the geometric proximity
between ports is reduced. We thus expect grid A to be fairly compressible, but
smaller reductions to be seen for grid B. Grid A is similar to the one used in [4],
while grid B was created in order to illustrate a more realistic setup.

The electric model of all grids is the following: every connection between
nodes is purely resistive and in every node there is a capacitance to ground.
Resistance and capacitance values were randomly generated in the interval
(0.9, 1.1).

In the following set of experiments the size of the reduced model is the same
for all methods and was pre-determined. The correlation matrix of SVDMOR
is a DC shifted moment with a shift of s = 0.1 rad/s in normalized frequency,
e.g., Ms = NT (G + 0.1 ×C)−1M. For this method, after computing the SVD
and choosing how many singular values to keep, a number of PRIMA iterations
is performed in order to generate a model of the required size. The number
of frequency samples of PMTBR was set such that we can draw a model of
the same size from matrix Z. Samples were chosen uniformly in the frequency
range shown in the plots, and an additional sample added at DC. Concerning
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Fig. 4. Bode plot of arbitrarily selected entry of 20 × 20 transfer function matrix
corresponding to grid A (r = 40).

TICER, we computed the mean of the time constants of all nodes and began
elimination of the nodes which are farther from the mean, until we reached the
required model size.

5.1 Grid A

Grid A was originally used in [4] to illustrate the SVDMOR algorithm. We ap-
plied all previously discussed methods to reduce this grid. The Bode plot of an
arbitrarily selected transfer function is presented in Figure 4. The number of
retained states was forced at r = 40. In the case of SVDMOR, 4 singular values
were kept and 10 PRIMA iterations were run, yielding the reduced model of
4 × 10 = 40 states. We can observe that SVDMOR and TBR show good re-
sults, better than PMTBR, while PRIMA and TICER show a large error (using
larger orders it is possible to produce an accurate approximation). In order to
understand the reason for these results the plot of the singular values of all
relevant methods is presented in Figure 5. We see that the singular values (s.v.)
of Ms, used by SVDMOR to guide the reduction, decay quite fast. Therefore
keeping just the first 4 yields a good approximation. On the other hand the
TBR Hankel s.v. and the PMTBR s.v. decay very slowly.

Notwithstanding, a Bode plot shows only one transfer function from the
transfer matrix. Table 1 shows the infinity norm of the transfer matrix error,
‖H(s) − Hr(s)‖∞. Analysis of the table indicates that in the overall model,
TBR behaves better than SVDMOR for this grid setup.

With respect to TICER, its main advantage over the remaining methods is
that it directly generates a realizable reduced model. Consequently, this method
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Fig. 5. Normalized plot of singular values for grid A: SVDMOR matrix, TBR-Hankel
singular values and PMTBR samples matrix.

Table 1. Infinity norm of H(s) − Hr(s) for 20 × 20 mesh with 20 inputs on the left
side and 20 outputs on the right side. SVDMOR used 4 singular values.

r = 40 PRIMA SVDMOR TBR PMTBR TICER

||H − Hr||∞ 2.391e-01 3.552e-04 1.320e-07 5.901e-02 8.085e-01

should be used whenever such a model is strictly necessary or in conjunction
with other MOR method, since by itself it fails to obtain a reasonable approx-
imation for small model sizes.

5.2 Grid B

In grid B the objective was to emulate a more realistic situation whereby po-
tentially many devices, modeled as current sources, are attached to the power
grid and can draw or sink current from/to it when switching. The number of
current sources was chosen to be around 10% of the number of nodes. We have
32 current sources and 20 voltage sources. This is a harder problem to reduce,
due to port proximity, and thus interaction, and the results show it. Again the
Bode plot of an arbitrarily selected transfer function is presented in Figure 6.
The number of retained states was now forced at r = 104 (two times the num-
ber of ports) already showing smaller reduction than for grid A. In this case,
the approximation produced by SVDMOR is less accurate. TBR and PMTBR
produce the most accurate models. PRIMA shows a reasonable approximation
while TICER fails to model accurately the behavior of the cutoff frequency. This
was expected from inspection of Figure 7, where we see that the TBR Hankel
s.v and the PMTBR s.v decay very fast, while the s.v. of Ms, used by SVDMOR
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for reduction, decay very slowly. Clearly, the assumption of highly correlated
ports is not valid here. The results concerning the error of the transfer matrix
are in Table 2.

The matrices of the reduced models of both experiences are full with the ex-
ception of TICER. However, given the lack of accuracy of the TICER-generated
models for this model size, such an advantage is of no consequence.
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Table 2. Infinity norm of H −Hr for 20× 20 mesh with 20 ports on the left side and
32 randomly distributed ports over the mesh.

r = 104 PRIMA SVDMOR TBR PMTBR TICER

||H − Hr||∞ 9.8.0e-02 8.071e-02 1.828e-02 1.195e-02 7.297e+00

Fig. 8. Input waveforms used for ICTBR experiment on grid B.

5.3 Time analysis: Input-Correlated TBR (ICTBR)

In this experiment, the ICTBR method, presented in Section 3.2, was used to
generate a reduced model. We assumed that the grid inputs were correlated and
had waveforms similar to those shown in Figure 8, which emulate transistor
current signatures. The amplitude of the waveforms was randomly varied by
10%, while the phase shows a random 20% jitter.

Grid B was used for this experiment and the voltage resulting from the time
analysis of one of the 32 ports connected to current sources is shown in Figure 9.
The reduced models shown have size r = 40 states (compare with size 104 used
in Section 5.2). From the plot it is clear that only the 40-states ICTBR model
can accurately mimic the voltage behavior of the port. This example shows that
significant reduction can be obtained by exploiting input correlation.

6 Conclusions

In this paper we discuss several issues related to model order reduction of power
grid networks and compare several standard and other recently proposed meth-
ods for solving this problem. We show that power grids present a strong chal-
lenge for model order reduction techniques and discuss scenarios in which this
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Fig. 9. Time variation of randomly selected node voltage for the ICTBR experiment
on grid B.

reduction might yield different compression ratios. We demonstrate through
simple examples that achieving relevant compression requires a careful study
of the grid characteristics and that no method produces the best solution in all
scenarios. We also show that significant reductions can be achieved by exploiting
known correlation between the input ports.
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Abstract. In highly parallel Multi-Processor System-on-Chip (MPSoC) design
stages, interconnect performance is a key optimization target. To effectively
achieve this objective, true-to-life IP core traffic must be injected and analyzed.
However, the parallel development of MPSoC components may cause IP core
models to be still unavailable when tuning communication performance. Tradi-
tionally, synthetic traffic generators have been used to overcome such an issue.
However, target applications increasingly present non-trivial execution flows

tion flows, representative of a wide class of applications with complex interrupt-
based synchronization; a reference methodology to split such applications in
execution subflows and to adjust the overall execution stream based upon hard-
ware events; a reactive simulation device capable of correctly replicating such
software behaviours in the MPSoC design phase. Additionally, we validate the
proposed concept by showing cycle-accurate reproduction of a previously traced
application flow.

1 Introduction

The design space exploration for the interconnect fabric is an important but time-
consuming step in designing a multiprocessor SoC (MPSoC). Depending on the appli-
cation and the processing cores, the communication architecture may need to support
wide ranges of traffic patterns, from bandwidth-intensive transactions such as cache
refills to latency-critical transactions such as semaphore accesses or interrupt events.
Unfortunately, a reliable analysis and optimization process requires cycle-true IP simu-
lation models of both cores and interconnects to be simultaneously available and ready
to interoperate, which is only possible late in the design flow.

A Traffic Injection Methodology with Support
for System-Level Synchronization

 
 
 

and synchronization patterns, especially in presence of underlying operating
systems and when exploiting interrupt facilities. This property makes it very
difficult to generate realistic test traffic. This paper presents a selection of applica-
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Fig. 1. Bus congestion over time for a multitasked application.

To cut on development time, Traffic Generators (TGs) are usually deployed in-
stead of IP core models until the very last design stages. TGs can operate in a variety
of ways, for example by creating synthetic traffic patterns according to some parame-
ters (e.g. bandwidth and latency distributions), or by playback of prerecorded trans-
action traces collected on a reference system. Unfortunately, the former approach is
only a gross estimation of the real traffic patterns that will be injected into the SoC,
and fails to correctly capture the time distribution of traffic spikes which would occur
in a real application. As for the latter approach, any prerecorded trace can be signif-
icantly different from the traffic that should actually take place, due to the eventual
deployment of different cores and interconnect architectures. For example, synchro-
nization by semaphore polling can require an unknown amount of bus accesses before
getting lock ownership, and the resulting bus congestion is hard to model with tra-
ditional trace-based mechanisms. Our approach is significantly different; in that, we
abstract away the computation aspect of the IP core, but realistically render externally
observable communication behaviour, including responses to interrupt events.

Modelling application flows in response to inherently asynchronous communica-
tion events such as interrupts can be challenging, particularly, on a general-purpose
processor, where it may involve Operating System (OS) interactions. While interrupts
themselves typically have a low impact on communication resources, interrupt han-
dling can cause severe network traffic peaks. For example, see Figure 1, where the bus
usage over time is reported for a shared bus MPSoC. In the plot, in between a boot and
a shutdown stage, it is easy to recognize a time-sliced multitasked benchmark where
two tasks alternate; one of them has heavy bandwidth requirements, while the other one
mostly operates in cache. Here, the context switch is triggered by an interrupt event,
which subsequently causes a skew in the application flow. As this example shows,
proper modeling of system tasks, including their communication and synchronization
properties, is a key enabling factor in understanding their impact on interconnect re-
sources, and consequently perform interconnect and system optimization. Any model
describing IP core traffic should feature extensive reactive capabilities, to mimic the
behaviour of the core even when facing unpredictable environmental events and net-
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work performance, e.g. due to resource contention, bus arbitration and routing policies.
Sample applications needing such complex modeling will be shown in Section 3.

In this paper, we present a traffic generation model, encompassing an instruction
set and a programmable simulation device, that attempts to generate SoC traffic com-
pliant with the behaviour of the IP cores that it is replacing (Figure 2). The proposed
cycle-true TG approach allows the separation of computation and communication con-
cerns, so that the designers can focus on accurate exploration of the SoC interconnect.
This model allows both for the generation of synthetic traffic and for the reproduction
of prerecorded traffic streams, but in any case is capable of realistically adjusting its
output depending on complex external synchronization events, like semaphore interac-
tion and interrupt notification. The TG device is a very simple instruction set processor,
and is attached via a bit- and cycle-true OCP 2.0 [2] port to the SoC interconnect. Our
approach is significantly different from a purely behavioural encapsulation of applica-
tion code into a simulation device, in analogy with TLM modeling; we aim at faithfully
replicating traffic patterns generated by a processor running an application, not just by
the application. This includes e.g. accurate modeling of cache refills.

While the TG that we propose can be used in the same way as traditional TGs, a
novel feature of our approach is that any knowledge about the behaviour of the actual
system can be thoroughly taken into account and rendered by means of TG programs.
The device programmability allows for the implementation of entire communication-
dominated SoC applications on top of it, including ones that make use of OS facilities.
Resulting traffic patterns closely resemble those of the real application running on top
of the real IP core, while accurately handling the synchronization and intercommu-
nication issues typical of multiprocessor systems. We focus both on the dynamics of
core-initiated communication (reads, writes) [10] and on system-initiated messages,
such as interrupts [3].

As a demonstration of the flexibility and accuracy of the model, we will show how
the proposed flow can be applied to a complex test case, with general-purpose ARM
processors running an OS in a multicore environment. The TG model is integrated into
MPARM [9], a homogeneous multiprocessor SoC simulation platform, which pro-
vides a bit- and cycle-true SoC simulation environment and on which a port of the
RTEMS [1] real-time OS is available. After performing a reference simulation, where
execution traces were collected, we will process them to derive suitable TG programs
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original traces, but instead that they feature significant reactiveness to external events.
By subsequently replacing ARM cores with traffic generators running such programs,
we will analyze the accuracy of the proposed TG concept.

The rest of the paper is organized as follows. Section 2 presents related work. Rel-
evant interrupt-aware applications to be modeled are discussed in Section 3. Section 4
presents details of the proposed implementation of the traffic generators, specifically
stressing flow control handling in presence of interrupts. Section 5 describes possible
ways to write programs for execution on top of TGs, and Section 6 highlights an ex-
ample TG deployment flow. Section 7 presents simulation results which document the
potential of our TG approach. Finally, Section 8 provides conclusions.

2 Previous Work

The use of traffic generators to explore NoC architectures is not new.
In [8], a stochastic model is used for NoC exploration. Traffic behavior is statisti-

cally represented by means of uniform, Gaussian, or Poisson distributions. Statistical
approaches lack accuracy and can potentially exhibit correlations among system activ-
ities which are unlikely in a SoC environment. Further, asynchronous events such as
interrupts are not easy to represent by these stochastic models. The simplicity and sim-
ulation speed of stochastic models may make them valuable during preliminary stages
of NoC development, but, since the characteristics (functionality and timing) of the IP
core are not captured, such models are unreliable for optimizing NoC features.

A modeling technique which adds functional accuracy and causality is transaction-
level modeling (TLM), which has been widely used for NoC and SoC design [4, 5, 6,
11, 12, 14]. In [11, 12], TLM has been used for bus architecture exploration. The com-
munication is modeled as read and write transactions which are implemented within
the bus model. Depending on the required accuracy of the simulation results, timing
information such as bus arbitration delay is annotated within the bus model. In [12]
an additional layer called “Cycle Count Accurate at Transaction Boundary” (CCATB)
is presented. Here, the transactions are issued at the same cycle as that observed in
Bus Cycle Accurate (BCA) models. Intra-transaction visibility is here traded off for a
simulation speed gain. While modeling the entire system at a higher abstraction level
i.e. TLM, both [11] and [12] present a methodology for preserving accuracy with gain
in simulation speed. Such models are efficient in capturing regular communication
behaviour, but the fundamental problem of capturing system unpredictability in the
presence of interrupts is not addressed.

In this chapter, we illustrate an accurate framework which is capable not only of
modeling processor-initiated communication in presence of latency uncertainties [10],
but even the processor behaviour when responding to fully asynchronous system
events, such as interrupts. As is demonstrated in [13], the impact of interrupts can
be significantly different for different OSs and network organizations. By providing
cycle- and bit-true ports to the SoC communication backbone, and a few flow control
instructions, we are able to accurately model the IP’s reactiveness, which is essential
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for realistic fabric performance evaluation. Our methodology for application model-
ing, originally presented in [3], takes into account multitasking and the impact of an
underlying OS, and is capable of representing a wide range of synchronization pat-
terns. Additionally, we have deployed the flow in a test environment, and in Section 7
we will show this flow to be over 98% accurate and providing a speedup that, while
nominal, favourably compares to [12].

3 Interrupt-Aware Synchronization Scenarios

Many communication and synchronization patterns are possible among tasks in a mul-
tiprocessor environment. This is especially true when interrupts are involved, since in-
terrupts represent intrinsically asynchronous, system-initiated communication towards
IP cores. To analyze such a wide variety of patterns [15], we identified three parallel
applications, interacting both among their tasks and with the underlying OS, which
highlight interrupt handling scenarios typical of real systems. These applications per-
form relatively light computation but exhibit non-trivial flow patterns, which makes
them much more difficult to model than computation-intensive tasks. As such, these
test cases are used to derive requirements of the most typical interrupt-based flow con-
trols.

The application templates we identified are:

– A multi-tasking application (“task”), as in Figure 3(a). In this case, two tasks run
on each processor; a variable amount of system processors may be present. No ex-
plicit communication is performed between tasks, neither intra- nor inter-core. The
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context switching between tasks is performed by the OS in response to an external
interrupt, which may typically be sent by a timer device. It is important to notice
that, if tasks are asymmetric, any rescheduling translates into different traffic work-
loads for the communication fabric. This effect must be captured.

– A pipelined parallel application (“pipe”), as in Figure 3(b). For this case, a single
task is mapped onto every system core. Tasks are programmed to communicate with
each other in a point-to-point producer-consumer fashion; every task acts both as a
consumer (for an upstream task) and as a producer (for a downstream task), therefore
logical pipelines can be achieved by instantiating multiple cores. Synchronization is
needed in every task to check the availability of input data and of output space be-
fore attempting data transfers. To guarantee data integrity, semaphores are provided
to assess such availability. For example, the consumer checks a semaphore before
accessing producer output. If this semaphore is found initially locked, a continuous
polling might be attempted, but at the expense of wasted energy and saturation of
the system interconnect. Instead, we implemented a mechanism which, in such a
scenario, suspends the consumer task and resumes it only when data is ready.

– An I/O-aware application (“IO”), as in Figure 3(c). A single task is running on every
system processor. These tasks do not communicate with each other, and perform
independent computation. However, at random times, a system I/O device sends an
interrupt to all of the cores to signal data availability. In response to this signal,
all of the processors execute an interrupt handler routine, which moves data blocks
across the system interconnect. When such handling is completed, tasks resume
their normal operation.

Even in these three experimental applications, the effort required to accurately cap-

The applications described above are timing-sensitive. However, within the single
task, the overall performed computation does not change depending on the order of
arrival of external events, and data dependencies can be captured. Only the amount
of computation between each pair of events can vary. Should an environment con-
straint not be satisfied, tasks always enter some form of suspension, albeit in very
different manners in each of the three examples. So, while an execution trace of these
benchmarks shows varying traffic patterns depending on external timings, the major
computation blocks are still recognizable.

Even though tasks with even more timing-dependent behaviour do exist, modeling
such tasks requires an intra-task notion of context switching, which we omit here.
It is worth stressing that, though not all interrupt-driven behaviours are represented,
the applications we try to analyze here are definitely representative of a vast class of
computation. The model we will propose can capture all such dynamics with proper
insight on the mechanics of the applications and the OS.
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ture the interrupt propagation (and therefore the synchronization schemes) is not
trivial.



Table 1. OCP master TG instruction set.

4 Support for Application Flow Replication

In this section, we describe (i) an instruction set which is capable of replicating the
traffic patterns generated by an IP core, (ii) an implementation of it by means of a
Traffic Generator Instruction Set Simulator (TG ISS), and (iii) an example program
written to exploit TG capabilities. The whole approach significantly extends [10] to
support interrupts and task switching.

The TG has an OCP master interface, and it can emulate IP cores running one or
multiple tasks with and without OS. The TG is able to issue a sequence of commu-
nication transactions separated by idle wait periods, based on the programmed flow
control conditions. In order to handle interrupts and other synchronization events, it is
reactive: for example, if necessary, it is able to switch between tasks upon notification.
The TG is implemented as a non-pipelined processor with a very simple instruction
set, as listed in Table 1. The processor has an instruction memory and a register file for
each task, but no data memory. The instruction set consists of a group of instructions
which issue OCP transactions and a group of instructions allowing the programming
of conditional sequencing and parameterized waits. Within the register file, some reg-
isters are designated as special purpose for flow control management; their usage is
described in Table 2. The rest are general purpose registers, and their number can be
configured.

Of the interrupt-related registers, IntrpMaskReg can be used to mask critical
sections of the TG program from interrupts. As seen in Section 3, different applica-
tions require different responses to interrupt events. For example, in IO modeling, the
main task is always interruptible, while once in the OS’s interrupt handling routine, ad-
ditional (nested) interrupts should be disabled. In pipe modeling, the interrupt handling
is more specialized: interrupts are only enabled after the task has suspended, while they
are masked during normal operation. IntrpReg holds the base location of the inter-
rupt handling code within the TG program. SWIntrpReg allows the TG program to
assert “software interrupts”, to which the TG model will react with jumps to different
parts of the program. Software interrupts are managed internally by the TG model. In
contrast, hardware interrupts are routed through external wires from the NoC, and are
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available on the sideband signals (SInterrupt) of the OCP interface. ThrdIDReg,
RDReg and RtnReg provide support for specific flow control functions.

Within the TG ISS, by maintaining copies of the Program Counter (PC) and reg-
ister file associated with each subtask, the context switching upon an interrupt event
can be realized. Upon interrupt notification, the values of the PC and register file of
the interrupted task are saved, the PC is updated with a value read from the special
register IntrpReg, and the register file values for the designated task are loaded. It
is afterwards possible to safely exit from the interrupt routine and resume a suspended
task by jumping to the backup value of the source PC and reloading the backup of the
register file.

Let us now consider an example of a TG program. In Figure 4, a program to model
the IO application is sketched; the interrupt handling routine is coded together with
the task itself. The TG program starts with a header describing the type of core and
its identifier. The next few statements express initialization of the register file. The PC
is increasing by either one or two locations along the trace; this is because some of
the opcodes in Table 1, namely SetRegister and If, require longer operands and
therefore fill two program slots. The main body of the TG program is composed of
sequences of bus reads and writes, interleaved with register accesses (mostly to set up
transaction address and data). Flow control instructions are inserted where appropri-
ate. The interrupt handling routine is located at PC 37; this base address is stored in
IntrptReg, which is initialized at PC 2. Within the interrupt routine, which is the
critical section of the flow, interrupts are disabled. Upon a hardware interrupt event, the
TG swaps the content of IntrptRegwith that of PC. The TG program then executes
any OS- or programmer-driven interrupt instructions, including transactions over the
communication architecture. At the end of the flow, a software interrupt is triggered
to restore the PC to the previously interrupted location (retrieved from IntrptReg).
The flow thus mimics Figure 3(c).

5 Coding TG Programs

Depending on IP model availability to the designer, different ways exist to write TG
programs which best represent the desired type of traffic.
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Fig. 4. IO TG Program.

5.1 Trace Parsing

In this scenario, availability of a pre-existing model for the IP under study is assumed.
In this case, the approach for TG program generation goes through two steps:

– A reference simulation is performed by using the available IP model, even plugged
into a different SoC platform from the target one. An execution trace is collected.

– The trace is parsed with an off-line tool. The output of the tool is the desired TG
program.

In this approach, the IP core to be modeled by the TG is actually available in
advance. Nevertheless, there is a rationale for still wanting to deploy the TG. The TG-
based flow might provide a quick functional yet cycle-accurate port of the IP model to
a SoC platform, in which, for whatever reason (e.g. licensing or technical issues), the
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IP model might not be directly or immediately suitable for integration. Moreover, the
TG device allows for a somewhat faster system simulation speed, which is valuable in
the design space exploration stage.

The off-line parsing tool must of course have some notion about the traced appli-
cation in order to correctly analyze and rearrange execution traces into TG programs.
While this effort is not trivial, we will show its feasibility by presenting a complete
validated cycle-accurate flow in Section 6.

5.2 Trace Parsing and Editing

In a related scenario, an IP model might be available, but it may differ under some
respect from the IP that will eventually be deployed in the SoC device. The designer
may then follow a route similar to the one outlined above. However, an additional off-
line postprocessing tool might be interposed to edit the reference trace so that it more
closely resembles that of the target IP. Some examples of the editing steps which are
possible include:

– Removing or adding bus transactions to model a more or less efficient cache sub-
system

– Removing or adding bus transactions to model a more or less comprehensive target
Instruction Set Architecture (ISA)

– Altering the spacing among bus transactions to reflect different pipeline designs or
timing properties

– Grouping or ungrouping bus accesses to reflect write-back vs. write-through cache
policies

The effort required to automate these kinds of trace alterations is expected to be
quite low, although the alterations themselves are very dependent on the differences
among the pre-existing and the final IP model. It is certainly reasonable to expect that
the coding time will be substantially than that required to develop or refine the target
IP model, thus allowing for earlier exploration of the interconnect design space.

In this scenario, overall cycle accuracy with respect to the eventual system is of
course not guaranteed. However, the TG will still be able to react with cycle accuracy
to any optimization in the SoC interconnect. Provided that the transaction patterns
are kept close to the ones of the target IP core, the approach will result in valuable
guidelines.

5.3 Direct Development

Of course, TG programs can be written from scratch. In this case, the flexible TG
instruction set allows for a full-featured traffic generation system. The availability of
built-in flow control management lets the designer implement the same synchroniza-
tion patterns which are present in real world applications (see Section 4 and [10]). Ad-
ditionally, the application chunks enclosed within synchronization points can quickly
be rendered by exploiting the flexible loop structures provided by the TG ISS, thus
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Fig. 5. Trace file snippet.

providing periodic traffic generation capabilities at least on par with those of tradi-
tional TG implementations. An alternate possibility, as demonstrated in [7], is using
the TG as an interface between formal and simulation models in a hybrid environment.
Here, the TG programs are written based on guidelines provided by the arrival curves
obtained by formal analysis methods. These programs are then used to generate com-
munication events for the simulation environment. Thus, the versatility of our TG flow
allows for deployment in a number of situations.

6 A Test Case: A Trace-Based TG Deployment Flow

To test TG accuracy and viability, we set up a validation flow following the outline
described in Section 5.1. First, the user performs a reference simulation of the target
applications where all IP cores are simulated using bit- and cycle-true models to col-
lect traces from the cores’ OCP interfaces. Figure 5 shows a snippet of trace file. It
contains the communication event type (read, write or interrupt), its response(s), and
its timestamp. Subsequently, these traces are converted into corresponding TG pro-
grams by a translator. Finally, a custom assembler is used to convert the symbolic TG
program into a binary image which can be loaded into the TG instruction memory and
executed. The trace to TG program conversion process is fully automated and the time
taken for this process is nominal ([10]). The validation of the TG flow is achieved by
coupling the TG with the same interconnect used for tracing with IP cores, and check-
ing the accuracy of the resulting IP core emulation. Experimental results will be shown
in Section 7.
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Fig. 6. Application flow, on any single core, of pipe.

Even though modeling an application in presence of interrupt handling is not
straightforward, we show an automated flow capable of capturing many synchroniza-
tion behaviours which are typical of complex systems. The designer does not need
to handle them manually. Algorithms to detect such behaviours in the applications of
Section 3 are shown next.

Depending on the target application, one or more of the following pieces of in-
formation can be extracted about interrupt handling from the trace file to help the
translator tool:

– the time when interrupt events occur,
– the end of an interrupt handling routine,
– the spontaneous suspension waiting for an interrupt in idle state.

The amount of annotations that can be extracted reflects the degree of access the
programmer has to the interrupt routine and to the OS internals. In the IO test case, the
interrupt handling is likely to be part of the functionality of a custom device driver, and
thus we assume that the programmer has full access to both the code of the application
and of the interrupt handler. Therefore, trace files contain the time of occurrence of the
interrupt event; custom markers (i.e. dummy memory accesses to specific locations)
can be appended by the programmer at the end of the interrupt handling routine. The
transactions within these bounds can be detected as interrupt handling code and be
encapsulated as such in the TG program.

In the pipe scenario, the task is interacting with the OS internals by voluntarily
suspending should certain conditions be true (i.e. finding a semaphore locked). Ad-
ditionally, the task negotiates with the OS to be resumed upon interrupt receipt. The
task may also want to ignore an interrupt in the following condition: it is possible that
the upstream producer, or the downstream consumer, notifies availability of data or
buffer space before the actual need for such resources, because the current task is still
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busy with previous internal processing. Despite the complex interaction, usually the
synchronization functionality required by pipe can be achieved by properly using OS
APIs, without direct access to the interrupt handler code, whose exit point is therefore
assumed to be not accessible by the programmer. As a result, the only annotations of
significance within the trace file are the synchronization points (semaphore checks) and
the interrupt arrival time. A TG program can thus mimic the flow shown in Figure 3(b),
first by reading the semaphore location, and then by choosing to continue or suspend
depending on the lock. Upon resumption by hardware interrupt, a final (re-)check of
the semaphore unlock can be done to ensure safe task operation. Figure 6 shows the
equivalent flow. In the TG program, hardware interrupts are used to wake up from the
suspension state within OS routines, while software interrupts redirect the execution
flow towards the main task. Note that IntrpMaskReg is set to the masked state for
the regular program and OS execution, and is only unmasked within the suspended
state.

In the task benchmark, the interrupt handler is typically completely out of the pro-
grammer’s control, as it is tied to the OS scheduling code. The tasks are not explicitly
notified upon the receipt of an interrupt, and are just suspended and resumed by the
OS. Therefore, trace files are annotated only with the time of occurrence of interrupt
events. The TG execution toggles among tasks upon these interrupts. This is not very
different from IO, but, since it is assumed for the programmer to be impossible to ex-
plicitly tag the handler exit point with a custom flag, the interrupt handling routine is
merged with a stage of the next scheduled task because the translator tool has no way
to detect this jump. Additionally, control is never spontaneously released by means of
software interrupts: the previously active task is only resumed upon arrival of a hard-
ware interrupt. The TG ISS automatically supports context switching, as described in
Section 4, with multiple register sets.

Once critical points within the trace file are recognized, the translator tool accord-
ingly inserts interrupt handling routines into the TG programs by using the TG flow
control instructions described in Section 4. The above mentioned issues in flow recog-
nition within the traces (e.g. interrupt handler code being captured as a part of the
instructions of the next task) introduce some minor inaccuracies, which will be quan-
tified in Section 7.

7 Experimental Results

We coded the three test cases mentioned in Section 3 as tasks running on top of an
operating system and we simulated them within the MPARM framework. Each was
tested with two (2P), four (4P) and six (6P) system processors. For task and IO, we
devoted one of the system cores to the generation of interrupts, emulating the role of
a timer or an IO device; this processor is not generating any other traffic on the bus,
and is just idling between interrupt generation events. The pipe benchmark does not
need this, since interrupts are directly triggered by the same tasks which perform the
computation. Subsequently, we applied the flow described in Section 6 as one of the
ways to get TG programs.
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Table 4. Relative Error and Speedups.

Table 3 shows statistics for experiments carried out within MPARM, both with
TG-injected traffic and with the original ARM cores. The figures express:

– the number of clock cycles required to complete a benchmark run, from the boot to
the end of the execution of the last processor;

– the amount of bus accesses done by a core to perform a read;
– the amount of bus accesses done by a core to perform a write;
– the number of seconds taken by the simulator to complete a benchmark run.

Table 4 shows the relative error in execution time and number of bus accesses
when contrasting the original execution on ARM cores and that on traffic generators,
and simulation speedup values. Figure 7 depicts the accuracy of our modeling scheme,
by plotting the relative error values. Errors are due to an improper modeling of the ap-
plication under test, which misplaces some bus accesses done by the real cores when
mapping them onto a TG program. For example, this may happen if a bus access be-
longing to an interrupt handler is mistakenly assigned to the main application task
when detecting the application flow within the execution trace. In turn, such misplace-
ments result in skews of bus transactions and arbitrations, which potentially propagate
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Fig. 7. Accuracy of the execution on TGs vs. on the original ARM cores.

across the benchmark run, therefore causing a difference in the final execution cy-
cle count. Such skews can also affect the amount of actual bus accesses, for example
whenever a semaphore polling has to be performed and the timing of the bus access
for the semaphore release is shifted in time.

The plot shows a good match between ARM and TG runs. The typical error, both
in execution time and bus accesses, is below 2%, resulting in a faithful reproduction of
the original execution flow and traffic patterns. The near-matching amount of read and
write accesses proves the role of the TG as a powerful design tool to mimic complex
application behaviour in replacement of a real IP core. Additionally, the correctness of
our TG program translation is validated. Some mismatches can be observed especially
in the execution time for the pipe benchmark. These are due to minor issues in properly
pinpointing single sections of internal OS code in the execution trace.

Figure 8 reports the simulation time speedup achieved as a side advantage when
running the benchmark code on TGs as opposed to ARM ISSs1. A nominal gain of
1.37x to 2.27x can be observed. The task and IO benchmarks exhibit a higher im-
provement due the presence of an IP core which is idle for most of the time, in the
time lapses between interrupt injections. In addition, the pipe benchmark is at a dis-
advantage due to a higher bus utilization (with six processors, 78% against 63% for
IO and 38% for task), which shifts simulation time emphasis upon the interconnect
model. This also explains why task has the best speedup figures.

In terms of scalability, while it might be expected that replacing increasing num-
bers of IP cores with traffic generators should yield increasingly better performance,
this is not always true; while the absolute gain is present and increasing, the relative
speedup can often decrease. The explanation for this is that, with more cores attached
to the system bus, congestion becomes an issue and more core cycles are spent wait-
ing for bus arbitration. In this case, there is no simulation time advantage in replacing
full-blown ISSs with traffic generators.

1 Benchmarks taken on a multiprocessor Xeon® 1.5 GHz with 12 GB of RAM, thus eliminat-
ing any disk swapping or loading effect. Time measurements were taken by averaging over
multiple runs.
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Fig. 8. Simulation speedup when replacing the original ARM cores with TGs.

8 Conclusions

Experimental results proved the viability of a modeling approach which decouples
simulation and optimization of IP cores and of interconnect fabrics. Even when tested
under complex synchronization scenarios, including asynchronous interrupts involving
OS interaction in a multiprocessor environment, the proposed instruction set is able to
reproduce IP traffic with full capability to express the application flow. Multiple ways
to write programs for this architecture are suggested, and a thorough analysis of one of
them is presented. The accuracy of a simulation device providing an implementation of
said instruction set is validated in a cycle-true environment by benchmarking multiple
applications, additionally achieving a nominal but noticeable simulation speedup.

Future work will revolve around improving the accuracy of our flow, by more
clearly detecting sections of input traces and rendering them as completely separate
tasks within TG programs. We also plan on carefully studying the impact of changes
in modeled traffic onto the interconnect congestion and therefore on communication
latency.
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Abstract. Leakage power consumption of current CMOS technology is 
already a great challenge.  ITRS projects that leakage power consumption may 
come to dominate total chip power consumption as the technology feature size 
shrinks.  Leakage is a serious problem particularly for SRAM which occupies 

novel ultra-low leakage SRAM design which we call “sleepy stack SRAM.”  
Unlike the straightforward sleep approach, sleepy stack SRAM can retain logic 
state during sleep mode, which is crucial for a memory element.  Compared to 
the best alternative we could find, a 6-T SRAM cell with high-Vth transistors, 
the sleepy stack SRAM cell with 2xVth at 110°C achieves, using 0.07µ 
technology models, more than 2.77X leakage power reduction at a cost of 16% 
delay increase and 113% area increase.  Alternatively, by widening wordline 
transistors and transistors in the pull-down network, the sleepy stack SRAM 
cell can achieve 2.26X leakage reduction without increasing delay at a cost of 
a 125% area penalty. 

1 Introduction 

Power consumption is one of the top concerns of Very Large Scale Integration 
(VLSI) circuit design, for which Complementary Metal Oxide Semiconductor 

of the recent growing demands of mobile applications.  Even before the mobile era, 
power consumption has been a fundamental problem.  Power consumption of CMOS 

90% or more of the total chip power previously, as the feature size shrinks, e.g., to 

technologies.  Based on the International Technology Roadmap for Semiconductors 

 
1 The first author was a Ph.D. candidate at Georgia Tech when the research reported in this paper was carried out. 

large transistor count in most state-of-the-art chip designs.  We propose a 

pp. 163–177. 
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0.065µ and 0.045µ, static power has become a great challenge for current and future 

240, VLSI-SoC: From Systems to Silicon, eds. Reis, R., Osseiran, A., Pfleiderer, H-J., (Boston: Springer), 

consists of dynamic and static components.  Although dynamic power accounted for 

(CMOS) is the primary technology.  Today’s focus on low power is not only because 
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(ITRS) [1], Kim et al. report that subthreshold leak-age power dissipation of a chip 
may exceed dynamic power dissipation at the 65nm feature size [2]. 

One of the main reasons causing the leakage power increase is increase of 
subthreshold leakage power.  When technology feature size scales down, supply 
voltage and threshold voltage also scale down.  Subthreshold leakage power 
increases exponentially as threshold voltage decreases.  Furthermore, the structure of 
the short channel device decreases the threshold voltage even lower.  Another 
contributor to leakage power is gate-oxide leakage power due to the tunneling cur-
rent through the gate-oxide insulator.  Although gate-oxide leakage power may be 
comparable to subthreshold leakage power in nanoscale technology, we assume other 
techniques will address gate-oxide leakage; for example, high-K dielectric gate 
insulators may provide a solution to reduce gate-leakage [2].  Therefore, this article 
focuses on reducing subthreshold leakage power consumption. 

Although leakage power consumption is a problem for all CMOS circuits, in this 
article we focus on SRAM because SRAM typically occupies large area and 
transistor count in a System-on-a-Chip (SoC).  Furthermore, considering an 
embedded processor example, SRAM accounts for 60% of area and 90% of the 
transistor count in Intel Xscale [3], and thus may potentially consume large leakage 
power.  

In this article, we propose the sleepy stack SRAM cell design, which is a mixture 
of changing the circuit structure as well as using high-Vth.  The sleepy stack 
technique [4, 5] achieves greatly reduced leakage power while maintaining precise 
logic state in sleep mode, which may be crucial for a product spending the majority 
of its time in sleep or stand-by mode.  Based on the sleepy stack technique, the 
sleepy stack SRAM cell design takes advantage of ultra-low leakage and state 
saving. 

This article is organized as follows.  In Section 2, prior work in low-leakage 
SRAM design is discussed.  In Section 3, our sleepy stack SRAM cell design 
approach is proposed.  In Section 4 and 5, experimental methodology and the results 
are presented.  In Section 6, conclusions are given.  

2 Previous work 

In this section, we discuss state-of-the-art low-power memory techniques, especially 
SRAM and cache techniques on which our research focuses. 

One easy way to reduce leakage power consumption is by adopting high-Vth 
transistors for all SRAM cell transistors.  This solution is simple but incurs delay 
increase. 

Azizi et al. observe that in normal programs, most of the bits in a cache are zeros.  
Therefore, Azizi et al. propose an Asymmetric-Cell Cache (ACC), which partially 
applies high-Vth transistors in an SRAM cell to save leakage power if the SRAM 
cell is in the zero state [6].  However, the ACC leakage power savings are quite 
limited in case of a benchmark which fills SRAM with mostly non-zero values. 

Nii et al. propose Auto-Backgate-Controlled Multi-Threshold CMOS (ABC-
MTCMOS), which uses Reverse-Body Bias (RBB) to reduce leakage power 
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consumption [7].  RBB increases threshold voltage without losing logic state.  This 
increased threshold voltage reduces leakage power consumption during sleep mode.  
However, since the ABC-MTCMOS technique needs to charge large wells, ABC-
MTCMOS requires significant transition time and power consumption. 

The forced stack technique achieves leakage power reduction by forcing a stack 
structure [9].  This technique breaks down existing transistors into two transistors 
and takes an advantage of the stack effect, which reduces leakage power 
consumption by connecting two or more turned off transistors serially.  The forced 
stack technique can be applied to a memory element such as a register [9] or an 
SRAM cell [10].  However, delay increase may occur due to increased resistance, 
and the largest leakage savings reported under specific conditions is 90% (1.9X) 
compared to conventional SRAM in 0.07µ technology [10]. 

Sleep transistors can be used for SRAM cell design.  Using sleep transistors, the 
gated-Vdd SRAM cell blocks pull-up networks from the Vdd rail (pMOS gated-Vdd) 
and/or blocks pull-down networks from the Gnd rail (nMOS gated-Vdd) [11].  The 
gated-Vdd SRAM cell achieves low leakage power consumption from both the stack 
effect and high-Vth sleep transistors.  However, the gated-Vdd SRAM cell [14] loses 
state when the sleep transistors are turned off. 

Flautner et al. propose the “drowsy cache” technique that switches Vdd 
dynamically [12].  For short-channel devices such as 0.07µ channel length devices, 
leakage power increases due to Drain Induced Barrier Lowering (DIBL), thereby 
increasing subthreshold leakage current.  The drowsy cache lowers the supply 
voltage during drowsy mode and suppresses leakage current using DIBL.  The 
drowsy cache technique can retain stored data at a leakage power reduction of up to 
86% [12]. 

Our sleepy stack SRAM cell can achieve more power savings than a high-Vth, an 
ACC or a drowsy cache SRAM cell.  Furthermore, the sleepy stack SRAM does not 
require large transition time and transition power consumption unlike ABC-
MTCMOS. 

3 Approach 

We first briefly review our recently proposed low-leakage structure named “sleepy 
stack” in Section 3.1.  Then, we explain our newly proposed “sleepy stack SRAM” 
in Section 3.2. 

3.1 Sleepy stack reduction 

The sleepy stack technique has a structure merging the forced stack technique and 
the sleep transistor technique [4, 5].  Fig. 1 shows a sleepy stack inverter.  The sleepy 
stack technique divides existing transistors into two transistors each typically with 
the same width W1 half the size of the original single transistor's width W0 (i.e., W1 = 
W0/2), thus maintaining equivalent input capacitance.  The sleepy stack inverter in 
Fig. 1 (a) uses W/L=3 for the pull-up transistors and W/L=1.5 for the pull-down 
transistors, while a conventional inverter with the same input capacitance would use 
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W/L=6 for the pull-up transistor and W/L=3 for the pull-down transistor (assuming 
carrier mobility of NMOS is twice that of PMOS).  Then sleep transistors are added 
in parallel to one of the transistors in each set of two stacked transistors.  We use half 
size transistor width of the original transistor (i.e., we use W0/2) for the sleep 
transistor width of the sleepy stack.   

 
Fig. 1. (a) Sleepy stack inverter active mode (left) and (b) sleep mode (right) 

 During active mode, S=0 and S'=1 are asserted, and thus all sleep transistors are 
turned on.  This structure potentially reduces circuit delay (compared to not adding 
sleep transistors) because (i) added sleep transistors are always on during active 
mode and thus at each sleep transistor drain, the voltage value connected to a sleep 
transistor is always ready during active mode and (ii) there is a reduced resistance 
due to the two parallel transistors.  Therefore, we can introduce high-Vth transistors 
to the sleep transistors and transistors in parallel with the sleep transistor without 
incurring large (e.g., 2X or more) delay overhead.  During sleep mode, S=1 and S'=0 
are asserted, and so both of the sleep transistors are turned off.  The high-Vth 
transistors and the stacked transistors in the sleepy stack approach sup-press leakage 
current.  In short, using high-Vth transistors, the sleepy stack technique potentially 
achieves 200X leakage reduction over the forced stack technique.  Furthermore, 
unlike the sleep transistor technique [11], the sleepy stack technique can retain exact 
logic state while achieving similar leakage reduction. 

3.2 Sleepy stack SRAM cell 

We design an SRAM cell based on the sleepy stack technique.  The conventional 6-T 
SRAM cell consists of two coupled inverters and two wordline pass transistors as 
shown in Fig. 2.  Since the sleepy stack technique can be applied to each transistor 
separately, the six transistors can be changed individually.  However, to balance 
current flow (failure to do so potentially increases the risk of soft errors [10]), a 
symmetric design approach is used. 
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Fig. 2. SRAM cell leakage paths 

Table 1. Sleepy stack applied to an SRAM cell 

Combinations cell leakage 
reduction 

bitline leakage 
reduction 

Pull-Down (PD) sleepy stack medium Low 
Pull-Down (PD), wordline (WL) sleepy stack medium High 
Pull-Up (PU), Pull-Down (PD) sleepy stack high Low 
Pull-Up (PU), Pull-Down (PD),   
wordline (WL) sleepy stack 

high high 

 
There are two main types of subthreshold leakage currents in a 6-T SRAM cell: 

cell leakage and bitline leakage (see Fig. 2).  It is very important when applying the 
sleepy stack technique to consider the various leakage paths in the SRAM cell.  
Since “Pull-Down (PD) sleepy stack” can suppress both cell leakage and bitline 
leakage paths together as shown in Fig. 2, we consider four combinations of the 
sleepy stack SRAM cell based on “Pull-Down (PD) sleepy stack” as shown in 
Table 1.  In Table 1, “Pull-Down (PD) sleepy stack” means that the sleepy stack 
technique is only applied to the pull-down transistors of an SRAM cell as indicated 
in the bottom dashed box in Fig. 3.  “Pull-Down (PD), wordline (WL) sleepy stack” 
means that the sleepy stack technique is applied to the pull-down transistors as well 
as wordline transistors.   Similarly, “Pull-Up (PU), Pull-Down (PD) sleepy stack” 
means that the sleepy stack technique is applied to the pull-up transistors and the 
pull-down transistors (but not to the wordline transistors) of an SRAM cell.  Finally, 
“Pull-Up (PU), Pull-Down (PD), wordline (WL) sleepy stack” means that the sleepy 
stack technique is applied to all the transistors in an SRAM cell.   
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Fig. 3. Sleepy stack SRAM cell 

The PD sleepy stack can suppress some part of the cell leakage.  Meanwhile, the 
PU, PD sleepy stack can suppress the majority of the cell leakage.  However, without 
applying the sleepy stack technique to the wordline (WL) transistors, bitline leakage 
cannot be significantly suppressed.  Although lying in the bitline leakage path, the 
pull-down sleepy stack is not effective to suppress both bitline leakage paths because 
one of the pull-down sleepy stacks is always on.  Therefore, to suppress subthreshold 
leakage current in a SRAM cell fully, the PU, PD and WL sleepy stack approach 
needs to be considered as shown in Fig. 3. 

The sleepy stack SRAM cell design results in area increase because of the in-
crease in the number of transistors.  However, we halve the transistor widths in a 
conventional SRAM cell to make the area increase of the sleepy stack SRAM cell 
not necessarily directly proportional to the number of transistors.  Halving a 
transistor width is possible when the original transistor width is at least 2X larger 
than the minimum transistor width (which is typically the case in modern high 
performance SRAM cell design).  Unlike the conventional 6-T SRAM cell, the 
sleepy stack SRAM cell requires the routing of one or two extra wires for the sleep 
control signal(s). 

4 Experimental methodology 

To evaluate the sleepy stack SRAM cell, we compare our technique to (i) using high-
Vth transistors as direct replacements for low-Vth transistors (thus maintaining only 
6 transistors in an SRAM cell) and (ii) the forced stack technique [8]; we choose 
these techniques because these two techniques are state saving techniques without 
high risk of soft error [10].  Although Asymmetric-Cell SRAM explained in Section 
2 is also a state-saving SRAM cell design, we do not consider Asymmetric-Cell 
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SRAM because we assume that our SRAM cells are filled equally with ‘1s’ and ‘0s.’ 
This is not the condition that ACC prefers, and under this condition the leakage 
power savings of ACC are smaller than the high-Vth SRAM cell, which uses high-
Vth for all six transistors.   

 
Fig. 4. Experimental procedure 

each technique.  Instead of starting from scratch, we use the CACTI model for the 
SRAM structure and transistor sizing [13].  We use NCSU Cadence design kit 
targeting TSMC 0.18µ technology [14].  By scaling down the 0.18µ layout, we 
obtain 0.07µ technology transistor level HSPICE schematics [4], and we design a 
64x64bit SRAM cell array. 

We estimate area directly from our custom layout using TSMC 0.18µ technology 
and scale to 0.07µ using the following formula: 0.0µ area = 0.18µ area X 0.07µ2 / 
0.18µ2 X 1.1 (non-linear overhead) [4].  We are aware this is not exact, hence the 

transistors is the same as with low-Vth transistors.  This assumption is reasonable 
because high-Vth can be implemented by changing gate oxide thickness and/or 
channel doping levels, and this almost does not affect area at all.  We estimate 
dynamic power, static power and read time of each of the various SRAM cell designs 

targeting 0.07µ technology [15].  The read time is measured from the time when an 
enabled wordline reaches 10% of the Vdd voltage to the time when either bitline or 

value while the other remains high.  Therefore, one of the bitline signals remains at 
Vdd, and the other is 0.9xVdd.  This 10% voltage difference between bitline and 

Dynamic power of the SRAM array is measured during the read operation with cycle 
time of 4ns.  Static power of the SRAM cell is measured by turning off sleep 
transistors if applicable.  To avoid leakage power measurement biased by a majority 
of ‘1’ versus ‘0’ (or vice-versa) values, half of the cells are randomly set to ‘0,’ with 
the remaining half of the cells set to ‘1.’ 

We compare the sleepy stack SRAM cell to the conventional 6-T SRAM cell, 
high-Vth 6-T SRAM cell and forced stack SRAM cell.  For the “high-Vth” technique 
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word “estimate.” We also assume the area of the SRAM cell with high-Vth 

bitline’ drops from 100% of the precharged voltage to 90% of the precharged voltage 

using HSPICE simulation with Berkeley Predictive Technology Model (BPTM) 

bitline’ is typically enough for a sense amplifier to detect the stored cell value [6].  

Fig. 4 shows the experimental methodology used.  We first layout SRAM cells of 
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and the forced stack technique, we consider the same technique combinations we 
applied to the sleepy stack SRAM cell  see Table 1. 

Table 2. Applied SRAM techniques 

  Technique Description 

Case1 Low-Vth Std Conventional 6T SRAM 
Case2 PD high-Vth High-Vth applied to PD 

Case3 PD, WL high-Vth High-Vth applied to PD, WL 

Case4 PU, PD high-Vth High-Vth applied to PU, PD 

Case5 PU, PD, WL high-Vth High-Vth applied to PU, PD, WL 

Case6 PD stack Stack applied to PD 

Case7 PD, WL stack Stack applied to PD, WL 

Case8 PU, PD stack Stack applied to PU, PD 

Case9 PU, PD, WL stack Stack applied to PU, PD, WL 

Case10 PD sleepy stack Sleepy stack applied to PD 

Case11 PD, WL sleepy stack Sleepy stack applied to PD, WL 

Case12 PU, PD sleepy stack Sleepy stack applied to PU, PD 

Case13 PU, PD, WL sleepy stack Sleepy stack applied to PU, PD, WL 

 
 To properly observe the techniques, we compare 13 different cases as shown in 

Table 2.  Case1 is the conventional 6-T SRAM cell, which is our base case.  Cases 2, 
3, 4 and 5 are 6-T SRAM cells using the high-Vth technique.  PD high-Vth is the 
high-Vth technique applied only to the pull-down transistors.  PD, WL high-Vth is 
the high-Vth technique applied to the pull-down transistors as well as to the 
wordline transistors.  PU, PD high-Vth is the high-Vth technique applied to the pull-
up and pull-down transistors.  PU, PD, WL high-Vth is the high-Vth technique 
applied to all the SRAM transistors.  Cases 6, 7, 8 and 9 are 6-T SRAM cells with 
the forced stack technique [8].  PD stack is the forced stack technique applied only to 
the pull-down transistors.  PD, WL stack is the forced stack technique applied to the 
pull-down transistors as well as to the wordline transistors.  PU, PD stack is the 
forced stack technique applied to the pull-up and pull-down transistors.  PU, PD, WL 
stack is the forced stack technique applied to all the SRAM transistors.  Please note 
that we do not apply high-Vth to the forced stack technique because the forced stack 
SRAM with high-Vth incurs more than 2X de-lay increase.  Cases 10, 11, 12 and 13 
are the four sleepy stack SRAM cell approaches as listed in Table 1.  For sleepy 
stack SRAM, high-Vth is applied only to the sleep transistors and the transistors 
parallel to the sleep transistors as shown in Fig. 3. 

5 Results 

In this section, we explore the experimental results for the different sleepy stack 
SRAM cell variations.  We consider area, cell read time, leakage power, active 
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power.  Then we discuss tradeoffs in leakage power techniques followed by static 
noise margin, which represents the noise immunity of SRAM. 

5.1 Area 

Table 3. Area 

  Technique 
Height 
[µ] 

Width 
[µ] 

0.18u tech. 
Area[µ2] 

0.07u tech. 
Area[µ2] 

Normalized 
area 

Case1 Low-Vth Std 3.825  4.500  17.213  2.864  1.00 
Case2 PD high-Vth 3.825  4.500  17.213  2.864  1.00 
Case3 PD, WL high-Vth 3.825  4.500  17.213  2.864  1.00 
Case4 PU, PD high-Vth 3.825  4.500  17.213  2.864  1.00 
Case5 PU, PD, WL high-Vth 3.825  4.500  17.213  2.864  1.00 
Case6 PD stack 3.465  4.680  16.216  2.698  0.94 
Case7 PD, WL stack 3.465  5.760  19.958  3.320  1.16 
Case8 PU, PD stack 3.285  4.680  15.374  2.558  0.89 
Case9 PU, PD, WL stack 3.465  5.760  19.958  3.320  1.16 
Case10 PD sleepy stack 4.545  5.040  22.907  3.811  1.33 
Case11 PD, WL sleepy stack 4.455  6.705  29.871  4.969  1.74 
Case12 PU, PD sleepy stack 5.760  5.040  29.030  4.829  1.69 

Case13 
PU, PD, WL sleepy  
stack 

5.535  6.615  36.614  6.091  2.13 

 

reduced further by using minimum size transistors, but reducing transistor size 
increases cell read time.  Some SRAM cells with the forced stack technique show 
smaller area even compared to the base case.  The reason is that divided transistors 
can enable a particularly squeezed design [4].  The sleepy stack technique increases 
area by between 33% and 113%.  The added sleep transistors are a bottleneck to 
reduce the size of the sleepy stack SRAM cells.  Further, wiring the sleep control 
signals (an overhead we do not consider in Table 3) makes the design more 
complicated. 

5.2 Cell read time 

Although SRAM cell read time changes slightly as temperature changes, the impact 
of temperature on the cell read time is quite small.  However, the impact of threshold 
voltage is large.  We apply 1.5xVth and 2xVth for the high-Vth technique and the 
sleepy stack technique.  As shown in Table 4, the delay penalty of the forced stack 
technique (with all low-Vth transistors) is between 35% and 70% compared to the 
standard 6-T SRAM cell.  This is one of the primary reasons that the forced stack 
technique cannot use high-Vth transistors without incurring dramatic delay increase 
(e.g., 2X or more delay penalty is observed using either 1.5xVth or 2xVth). 
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Table 4. Normalized cell read time (absolute numbers available in [4]) 

  Technique 25°C 110°C 

  1xVth 1.5xVth 2xVth 1xVth 1.5xVth 2xVth 
Case1 Low-Vth Std 1.000 N/A N/A 1.000 N/A N/A 
Case2 PD high-Vth N/A 1.022 1.043 N/A 1.020 1.061 
Case3 PD, WL high-Vth N/A 1.111 1.280 N/A 1.117 1.262 
Case4 PU, PD high-Vth N/A 1.022 1.055 N/A 1.020 1.048 
Case5 PU, PD, WL high-Vth N/A 1.111 1.277 N/A 1.110 1.259 
Case6 PD stack 1.368 N/A N/A 1.345 N/A N/A 
Case7 PD, WL stack 1.647 N/A N/A 1.682 N/A N/A 
Case8 PU, PD stack 1.348 N/A N/A 1.341 N/A N/A 
Case9 PU, PD, WL stack 1.704 N/A N/A 1.678 N/A N/A 
Case10 PD sleepy stack N/A 1.276 1.307 N/A 1.263 1.254 
Case11 PD, WL sleepy stack N/A 1.458 1.551 N/A 1.435 1.546 
Case12 PU, PD sleepy stack N/A 1.275 1.306 N/A 1.287 1.319 

Case13 PU, PD, WL sleepy 
 stack 

N/A 1.456 1.605 N/A 1.450 1.504 

 
Among the three low-leakage techniques, the sleepy stack technique is the 

second best in terms of cell read time.  The PU, PD, WL high-Vth with 2xVth is 
16% faster than the PU, PD, WL sleepy stack with 2xVth at 110°C.  Since we are 
aware that area and delay are critical factors when designing SRAM, we will explore 
area and delay impact using tradeoffs in Section 5.4.  However, let us first discuss 
leakage reduction. 

5.3 Leakage power 

We measure leakage power while changing threshold voltage and temperature be-
cause the impact of threshold voltage and temperature on leakage power is 
significant.  Table 5 shows leakage power consumption with two high-Vth values, 
1.5xVth and 2xVth, and two temperatures, 25°C and 110°C, where Case1 and the 
cases using the forced stack technique (Cases 6, 7, 8 and 9) are not affected by 
changing Vth because these use only low-Vth.  (Please note the absolute numbers are 
available in [12].) 

5.3.1 Results at 25°C Our results at 25°C show that Case5 is the best with 2xVth 
and Case13 is the best with 1.5xVth.   Specially, at 1.5xVth, Case5 and Case13 
achieve 25X and 60X leakage reduction over Case1, respectively.  However, the 
leakage reduction comes with delay increase.  The delay penalty is 11% and 45%, 
respectively, compared to Case1.   
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Table 5. Normalized leakage power (absolute numbers available in [4]) 

  Technique 25°C 110°C 
  1xVth 1.5xVth 2xVth 1xVth 1.5xVth 2xVth 
Case1 Low-Vth Std 1.0000 N/A N/A 1.0000 N/A N/A 
Case2 PD high-Vth N/A 0.5466 0.5274 N/A 0.5711 0.5305 
Case3 PD, WL high-Vth N/A 0.2071 0.1736 N/A 0.2555 0.1860 
Case4 PU, PD high-Vth N/A 0.3785 0.3552 N/A 0.4022 0.3522 

Case5 PU, PD, WL high-
Vth 

N/A 0.0391 0.0014 N/A 0.0857 0.0065 

Case6 PD stack 0.5541 N/A N/A 0.5641 N/A N/A 
Case7 PD, WL stack 0.2213 N/A N/A 0.2554 N/A N/A 
Case8 PU, PD stack 0.3862 N/A N/A 0.3950 N/A N/A 
Case9 PU, PD, WL stack 0.0555 N/A N/A 0.0832 N/A N/A 
Case10 PD sleepy stack N/A 0.5331 0.5315 N/A 0.5282 0.5192 
Case11 PD, WL sleepy stack N/A 0.1852 0.1827 N/A 0.1955 0.1820 
Case12 PU, PD sleepy stack N/A 0.3646 0.3630 N/A 0.3534 0.3439 

Case13 PU, PD, WL sleepy 
stack 

N/A 0.0167 0.0033 N/A 0.0167 0.0024 

5.3.2 Results at 110°C Absolute power consumption numbers at 110°C show more 
than 10X increase of leakage power consumption compared to the results at 25°C.  
This could be a serious problem for SRAM because SRAM often resides next to a 
microprocessor whose temperature is high.   

At 110°C, the sleepy stack technique shows the best result in both 1.5xVth and 
2xVth even compared to the high-Vth technique.  The leakage performance 
degradation under high temperature is very noticeable with the high-Vth technique 
and the forced stack technique.  For example, at 25°C the high-Vth technique with 
1.5xVth (Case5) and the forced stack technique (Case9) show around 96% leakage 
reduction.  However, at 110°C the same techniques show around 91% of leakage 
power reduction compared to Case1.  Only the sleepy stack technique achieves 
superior leakage power reduction; after increasing temperature, the sleepy stack 
SRAM shows 5.1X and 4.8X reductions compared to Case5 and Case9, respectively, 
with 1.5xVth. 

When the low-leakage techniques are applied only to the pull-up and pull-down 
transistors, leakage power reduction is at most 65% (2xVth, 110°C) because bitline 
leakage cannot be suppressed.  The remaining 35% of leakage power can be 
suppressed by applying low-leakage techniques to wordline transistors.  This implies 
that bitline leakage power addresses around 35% of SRAM cell leakage power 
consumption.  This trend is observed for all three techniques considered, i.e., high-
Vth, forced stack and sleepy stack. 

5.4 Tradeoffs in low-leakage techniques 

Although the sleepy stack technique shows superior results in terms of leakage 
power, we need to explore area, delay and power together because the sleepy stack 
technique comes with non-negligible area and delay penalties.  To be compared with 
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the high-Vth technique at the same cell read time, we consider four more cases for 
sleepy stack SRAM in addition to the cases already considered in Table 5; we 
increase the widths of all wordline and pull-down transistors (including sleep 
transistors).  Specifically, for the sleepy stack technique, we find new transistor 
widths of wordline transistors and pull-down transistors such that the result is delay 
approximately equal to the delay of the 6-T high-Vth case, i.e., Case5.  The new 
cases are marked with ‘*’ (Cases 10*, 11*, 12*, 13*).  The results are shown in 
Table 6.  To enhance readability of tradeoffs, each table is sorted by leakage power.  
Although we compared four different simulation conditions, we take the condition 
with 2xVth at 110°C as important representative technology points at which to 
compare the trade-offs between techniques.  We choose 110°C because generally 
SRAM operates at a high temperature and also because high temperature is the 
“worst case.”  

In Table 6, we observe six Pareto points, respectively, which are in shaded rows, 
considering three variables of leakage, delay, and area.  Case13 shows the lowest 
possible leakage, 2.7X smaller than the leakage of any of the prior approaches 
considered; however, there is a corresponding delay and area penalty.  Alternatively, 
Case13* shows the same delay (within 0.2%) as Case5 and 2.26X leakage reduction 
over Case5; however, Case13* uses 125% more area than Case5.  In short, this 
article presents new, previously unknown Pareto points at the low-leakage end of the 
spectrum (for a definition of a “Pareto point” please see [16]). 

Table 6. Tradeoffs (2xVth, 110°C) 

  Technique 
Normalized 

leakage 
Normalized 

delay 
Normalized 

area 

Case1 Low-Vth Std 1.000 1.000 1.000 
Case6 PD stack 0.564 1.345 0.942 
Case2 PD high-Vth 0.530 1.061 1.000 
Case10 PD sleepy stack 0.519 1.254 1.331 
Case10* PD sleepy stack* 0.519 1.254 1.331 
Case8 PU, PD stack 0.395 1.341 0.893 
Case4 PU, PD high-Vth 0.352 1.048 1.000 
Case12* PU, PD sleepy stack* 0.344 1.270 1.713 
Case12 PU, PD sleepy stack 0.344 1.319 1.687 
Case7 PD, WL stack 0.255 1.682 1.159 
Case3 PD, WL high-Vth 0.186 1.262 1.000 
Case11* PD, WL sleepy stack* 0.183 1.239 1.876 
Case11 PD, WL sleepy stack 0.182 1.546 1.735 
Case9 PU, PD, WL stack 0.083 1.678 1.159 
Case5 PU, PD, WL high-Vth 0.007 1.259 1.000 
Case13* PU, PD, WL sleepy stack* 0.003 1.265 2.253 
Case13 PU, PD, WL sleepy stack 0.002 1.504 2.127 
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5.5 Active power 

Table 7 shows power consumption during read operations.  The active power 
consumption includes dynamic power used to charge and discharge SRAM cells plus 
leakage power consumption.  At 25°C leakage power is less than 20% of the active 
power in case of the standard low-Vth SRAM cell in 0.07u technology according to 
BPTM [15].  However, leakage power increases 10X as the temperature changes to 
110°C although active power increases 3X.  At 110°C, leakage power is more than 
half of the active power from our simulation results.  Therefore, without an effective 
leakage power reduction technique, total power consumption – even in active mode – 
is affected significantly. 

Table 7. Normalized active power (absolute numbers available in [4]) 

  Technique 25°C 110°C 

  1xVth 1.5xVth 2xVth 1xVth 1.5xVth 2xVth 
Case1 Low-Vth Std 1.000 N/A N/A 1.000 N/A N/A 
Case2 PD high-Vth N/A 0.936 0.913 N/A 0.724 0.691 
Case3 PD, WL high-Vth N/A 0.858 0.829 N/A 0.618 0.478 
Case4 PU, PD high-Vth N/A 0.928 0.893 N/A 0.572 0.582 

Case5 
PU, PD, WL high-
Vth 

N/A 0.838 0.842 N/A 0.432 0.368 

Case6 PD stack 0.926 N/A N/A 0.669 N/A N/A 
Case7 PD, WL stack 0.665 N/A N/A 0.398 N/A N/A 
Case8 PU, PD stack 0.905 N/A N/A 0.596 N/A N/A 
Case9 PU, PD, WL stack 0.637 N/A N/A 0.293 N/A N/A 
Case10 PD sleepy stack N/A 0.981 0.981 N/A 0.807 0.811 
Case11 PD, WL sleepy stack N/A 0.773 0.717 N/A 0.586 0.600 
Case12 PU, PD sleepy stack N/A 0.961 1.005 N/A 0.786 0.797 

Case13 
PU, PD, WL sleepy 
stack 

N/A 0.719 0.708 N/A 0.588 0.546 

5.6 Static noise margin 

Changing the SRAM cell structure may change the static noise immunity of the 
SRAM cell.  Thus, we measure the Static Noise Margin (SNM) of the sleepy stack 
SRAM cell and the conventional 6-T SRAM cell.  The SNM is defined by the size of 
the maximum nested square in a butterfly plot.  The SNM of the sleepy stack SRAM 
cell is measured twice in active mode and sleep mode, and the results are shown in 
Table 8.  The SNM of the sleepy stack SRAM cell in active mode is 0.299V and 
almost exactly the same as the SNM of a conventional SRAM cell; the SNM of a 
conventional SRAM cell is 0.299V.  Although we do not perform a process variation 
analysis, we expect that the high SNM of the sleepy stack SRAM cell makes the 
technique as immune to process variations as a conventional SRAM cell. 
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Table 8. Static noise margin 

  Technique Active mode Sleep mode 

Case1 Low-Vth Std 0.299 N/A 

Case10 PD sleepy stack 0.317 0.362 

Case11 PD, WL sleepy stack 0.324 0.363 

Case12 PU, PD sleepy stack 0.299 0.384 
Case13 PU, PD, WL sleepy stack 0.299 0.384 

6 Conclusions 

In this article, we have presented and evaluated our newly proposed “sleepy stack 
SRAM” Our sleepy stack SRAM provides the largest leakage savings among all 
alternatives considered.  Specifically, compared to a standard SRAM cell – Case1 – 
Table 5 shows that at 110°C and 2xVth, Case13 reduces leakage by 424X as 
compared to Case1; unfortunately, this 424X reduction comes as a cost of a delay 
increase of 50.4% and an area penalty of 113%.  Resizing the sleepy stack SRAM 
can reduce delay significantly at a cost of less leakage savings; specifically, Case13* 
is an interesting Pareto point as discussed in Section 5.4. 

We believe that this article presents an important development because our 
sleepy stack SRAM seems to provide, in general, the lowest leakage Pareto points of 

up to 125% for Case13* in Table 6), perhaps sleepy stack SRAM would be most 
appropriate for a small SRAM intended to store minimal standby data for an 
embedded system spending significant time in standby mode; for such a small 
SRAM (e.g., 16KB), the area penalty may be acceptable given system-level standby 

perhaps specific target embedded systems could use sleepy stack SRAM more 
widely. 
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Abstract. This work addresses the problem of application mapping in 
networks-on-chip (NoCs), having as goal to minimize the total dynamic 
energy consumption of complex system-on-a-chips (SoCs). It explores the 
importance of characterizing network traffic to predict NoC energy 
consumption and of evaluating the error generated when the bit transitions 
influence on traffic is neglected. In applications that present a large amount of 
packet exchanges the error is propagated, significantly affecting the mapping 
results. The paper proposes a high-level application model that captures the 
traffic effect, enabling to estimate the dynamic energy consumption. In order 
to evaluate the quality of the proposed model, a set of real and synthetic 
applications were described using both, a previously proposed model that does 
not capture the bit transition effect, and the model proposed here. Each high-
level application model was implemented inside a framework that enables the 
description of different applications and NoC topologies. Comparing the 

45% in energy saving. 

1. Introduction 

New technologies allow the implementation of complex systems-on-chip (SoC) 
with hundreds of millions transistors integrated onto a single chip. These complex 
systems need adequate communication resources to cope with very tight design 
requirements. In addition, deep sub-micron effects pose formidable physical design 
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resulting mappings, the model proposed displays an average improvement of 
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 challenges for long wires and global on-chip communication [1]. Many designers 
propose to change from the fully synchronous design paradigm to globally 
asynchronous, locally synchronous (GALS) design paradigm [2]. GALS design 
subdivides an application into sub-applications. Each sub-application is a 
synchronous design physically placed inside a usually rectangular area of the chip, 
called tile. Besides, the communication between tiles is provided by asynchronous 
communication resources. Problems with wiring scalability are causing a migration 
from the use of busses to more complex and more scalable intra chip communication 
infrastructure and architectures. A network-on-chip (NoC) is such an infrastructure, 
composed by routers interconnected by communication channels. NoCs are suitable 
to deal with the above mentioned tight requirements, since they can support 
asynchronous communication, high scalability, reusability and reliability [3]. 

Intellectual property cores or IP cores or simply cores are pre-designed and pre-
verified complex hardware modules, which can be considered as key components in 
the development of SoCs. Consider a SoC implemented using the GALS paradigm, 
composed by n cores and employing a NoC as communication infrastructure. The 
application mapping problem or simply the mapping problem for this architecture 
consists in finding an association of each core to a tile (a mapping) for an SoC such 
that some cost function is minimized. Naturally, cost functions are derived from 
latency and/or throughput and/or power dissipation figures. 

Assuming there are n equally-sized tiles to where any of the n cores can be 
assigned, the mapping problem allows n! distinct solutions. The cost of using 
exhaustive search algorithms to solve the mapping problem is obviously prohibitive 
for even moderately sized NoCs (e.g. 4x4 2D meshes). Consequently, the search of 
an optimal implementation for such SoCs requires efficient mapping strategies and 
sound application models. Some mapping strategies have already been proposed. 
Core graphs [4] and application characterization graphs (APCGs) [5] are instances 
of a same generic model supporting the solution of the mapping problem. This model 
is called here communication weighted model (CWM) [6], since it takes into account 
only the amount of communication exchanged between pairs of cores. 

One important observation is that CWM models abstract at least one important 
traffic information that affects dynamic energy consumption estimation, namely the 
separation between amount of bits and amount of bit transitions on communications. 
When a physical wire changes its logic value from 0 to 1 or from 1 to 0 a bit 
transition occurs. Each bit transition consumes dynamic energy. However, traffic 
without bit transitions also consumes dynamic energy. Experiments based on the 
traffic behavior for some applications showed that considering either bit transition or 
amount of bits may lead to estimation discrepancies of more than 100% in dynamic 
energy consumption (see Section 3). For instance, an implementation of a 16-word 
NoC router input buffer1 implemented with CMOS TSMC 0.35µm technology, 
showed a difference of more than 180% in dynamic energy consumption when 
comparing minimum (zero) and maximum values of bit transitions (127) for a 128-
flit packet. This prevents the choice of an average value of bit energy consumption or 
the use of only bit transition information as sound. Consequently, the effect of 
omitting the amount of bit transitions or the bit volume onto a NoC traffic modeling 

 
1 The router input buffer is a subcircuit of the Hermes NoC [11]. 
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will certainly lead to data poorly correlated to reality to be used for mapping 
estimation. To overcome this problem, this paper proposes an extended 
communication weighted model (ECWM), which captures both, the amount of 
communication and the bit transition rate in each communication channel. 
Comparing the mapping quality of applications modeled with ECWM versus CWM, 
all conducted experiments showed improvement in dynamic energy consumption 
savings. 

In the rest of this work, Section 2 discusses related work, while Section 3 
presents the dynamic energy consumption model for NoC, justifying its proposition 
in more detail. Next, Section 4 defines the target architecture model and the 
application models. Section 5 shows how application models are applied on target 
architecture models to compute dynamic energy consumption. Section 6 presents the 
tools used to conduct the experiments and the associated results comparing distinct 
model mappings. Finally, Section 7 presents some conclusions. 

2. Related Work 

Ye, Benini and De Micheli [7] introduced a framework to estimate the energy 
consumption in a communication infrastructure considering routers, internal buffers, 
and interconnect wires. The framework includes a simulation facility to trace the 
dynamic energy consumption with bit-level accuracy. The simulation of NoCs under 
different traffic enabled them to propose a power dissipation model, which is applied 
to architectural exploration. Similar power dissipation models are presented in [4-6, 
8] and here. 

Hu and Marculescu [4] showed that by using mapping algorithms it is possible to 
reduce energy consumption by more than 60% when compared to random mapping 
solutions. The authors proposed a model that captures the application core 
communication. Murali and De Micheli [5] proposed a similar model; both models 
are here classified as CWMs. The main contribution of their work is an algorithm to 
map cores on 2D mesh NoC architectures with bandwidth constraints minimizing 
average communication delay. 

Marcon et al. [6] proposed a communication dependence model (CDM), which 
represents application cores describing both the dependence among messages and the 
amount of bits transmitted in each message. They show that compared to CWM 
CDM allows obtaining mappings with 42% average reduction in the execution time, 
together with a 21% average reduction in the total energy consumption for state-of-
the-art technologies. In [8], the same group proposes the communication dependence 
and computation model (CDCM), which is an improvement of CDM. However, for 
both models, to capture message dependence from an application is a hard, error 
prone and not easily automated task. The present work proposes another model that 
can be easily obtained from design descriptions by simulation, as occurs with CWM. 
In addition, this model improves CWM by the capture of bit transition quantities. 

Ye et al. [9] analyzed different routing schemes for packetized on-chip 
communication on a mesh NoC architecture, describing the contention problem and 
the consequent performance reduction. In addition, they evaluate the packet energy 
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 consumption using the same energy model proposed in [4] and [5], extending it to 
the analysis of packet transmission phenomena. 

Peh and Eisley [10] proposed a framework for network energy consumption 
analysis that uses link utilization as the unit of abstraction for network utilization and 
energy consumption, capturing energy variations both spatially, across the network 
fabric, and temporally, across application execution time. 

To the knowledge of the Authors, no model of energy consumption for cores 
takes into account the bit transition effect of the inter-core traffic. This work shows 
the importance of this communication aspect, since abstracting bit transition 
phenomena may lead to significant error in power dissipation estimation. 

3. Dynamic Energy Consumption Model 

Energy consumption originates from both IP cores operation and interconnection 
components between these cores. For most current CMOS technologies, static 
energy still accounts for the smallest part of the overall consumption [1]. Thus, this 
work focuses on NoC dynamic energy consumption only, using it as an objective 
function to evaluate the quality of application cores mapping onto 2D mesh NoC 
architectures. 

Dynamic energy consumption is proportional to switching activity, and arises 
from bits moving across the communication infrastructure. In NoCs dynamic power 
is dissipated in interconnect wires and inside each router. Several authors [4-9] have 
proposed to estimate NoC energy consumption by evaluating the effect of bit traffic 
and packet traffic on each component of the communication infrastructure. This 
work evaluates the dynamic energy consumption for 2D mesh NoCs with regular 
topology only. The choice of regular topologies facilitates the estimation of 
interconnect wires length, and consequently the accounting of their influence on 
dynamic energy consumption. 

The bit energy notation EBit stands for an estimation of the dynamic energy 
consumption of each bit. It can be split into four components: bit dynamic energy, 
consumed into router buffers (EBbit); bit dynamic energy, consumed into router 
control (ESbit), and comprised by router wires and control logic gates; bit dynamic 
energy, consumed on links between tiles (ELbit); and bit dynamic energy consumed 
on links between a router and the local core (ECbit). The relationship between these 
quantities is expressed by Equation (1), which gives a way to estimate the dynamic 
energy consumption of a bit crossing a router, a local link and an inter-tile link. 

EBit = EBbit + ESbit + ELbit + ECbit (1) 

This Section evaluates the effect of the above parameters on the computation of 
the overall dynamic energy consumption of a given SoC. Data were obtained from 
SPICE simulation of the Hermes NoC [11] synthesized for CMOS TSMC 0.35µm 
technology. 

Even if the exact values of energy dissipation are subject to NoC implementation 
technology parameters, in general bit transitions affect much more the router buffers 
energy consumption than the consumption of router control circuits. This assertion is 
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corroborated by Fig. 1, which illustrates this issue for different sizes of the Hermes 
router buffers with 8-bit flit width and centralized control logic. The graph depicts 

amount of bit transitions in a 128-bit packet. 
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results are computed w.r.t. the respective zero bit transition dissipation values. 

Clearly, energy consumption increases linearly and is directly proportional to the 
amount of bit transitions in the packet. However, the bit transition effect on the 
increase of dynamic energy consumption is around five times more pronounced for 
buffers than for control circuits. For instance, from 0% to 100% of bit transitions, the 
energy consumption increases from 0% to 181% on buffers against only 0% to 25% 
on control circuits. 

Fig. 2 compares the same bit transition effect in Hermes control logic circuit with 
8-bit and 16-bit flit width. It is noticeable that the amount of bit transition has small 
influence over the control circuits’ energy consumption, even with significant 
increase in flit width. 
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Fig. 2. Comparing bit transition effect on dynamic energy of control logic for 8- and 16-bit flit 
widths. 
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Fig. 1. Bit transition effect on dynamic energy consumption of buffers and of control circuits. 
The traffic is one 128-bit packet with bit transitions varying from 0% to 100%. Percentage 

power dissipation of router buffers and router control circuits as a function of the 



control circuits, the same parameter cannot be neglected without consequences on 
the dynamic energy consumption of buffers, as illustrated by Fig. 3. 
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width and buffer depths of 4 and 16 flit positions. 

In tile-based architectures with regular topology, the tile dimension is normally 
close to the average core dimension, and the core router interface is normally formed 
by small wires compared to inter-router wires. As a consequence, ECbit is much 
smaller than ELbit. Fig. 4 corroborates this last statement, by comparing energy 

magnitude of energy consumption between ELbit and ECbit. This occurs because a 
link is an RC circuit, and inter-tile links are much longer than local ones. 
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metal wires in CMOS TSMC 0.35µm technology. 
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Fig. 3. Bit transition effect on dynamic energy consumption of buffers with 8 and 16-bit flit 

While the flit width has a small influence on dynamic energy consumption of 

Fig. 4. Analysis of bit transitions effect on dynamic energy consumption of local and inter-

consumption for local and inter-tile links. A twenty-fold difference arises in the 

router links. Each tile is assumed to have a dimension of 5mm × 5mm, and uses 16-bit links of 
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Considering these results, ECbit may be safely neglected without significant 
errors in total energy dissipation. Therefore, Equation (2) can be used to compute the 
dynamic energy consumed by a single bit traversing the NoC, from tile i to tile j, 
where η corresponds to the number of routers through which the bit passes. 

EBitij = η × (EBbit + ESbit) + (η – 1) × ELbit (2) 

In addition, Fig. 4 also shows that the dynamic energy consumption of links 
becomes significant only in the presence of a relatively high percentage of bit 
transitions. The ELbit parameter is related only to the amount of bit transition while 
EBbit and ESbit are each sub-divided into two new parameters, corresponding to the 
effect of the amount of communication and the bit transition rate. 

3.1 Model Parameters Acquisition 

To estimate the above bit energy parameters (EBbit, ESbit, and ELbit), it suffices 
to evaluate the dynamic energy consumption of a communication infrastructure with 
different traffic patterns. For the Hermes NoC communication infrastructure, the 
typical element is a router with five bidirectional channels connecting to four other 
routers and to a local IP core. The router of Hermes employs an XY routing 
algorithm, and uses input buffering only. The conducted experiments used a mesh 
topology version of Hermes with six different configurations. These are obtained by 
varying flit width (either 8 or 16 bits), and input buffers depth (4, 8 and 16 flits). For 
each configuration, 128-flit packets enter the NoC, each with a distinct pattern of bit 
transitions in their structure, from 0 to 127. 

The flow for obtaining dynamic energy consumption data is depicted in Fig. 5 
and comprises three stages. 

Stage 1 starts with the NoC VHDL description and traffic files, both obtained 
using Maia [12], an environment for automating NoC design capture and NoC traffic 
generation. Traffic input files enable to exercise the NoC through each router local 
channels. They model the communication behavior of local cores. A VHDL 
simulator applies input signals from traffic files to the NoC or to NoC modules 
(either a single router or a router inner module, i.e. input buffer or control logic). 
Traffic files and VHDL design files are connected using a Foreign Language 
Interface (FLI) method. 

The simulation produces signal lists capturing the logic values variations for each 
signal. These lists are converted to electric stimuli and used in SPICE simulation (in 
Stage 3). 

In Stage 2, the module to be evaluated (e.g. an input buffer) is synthesized using 
a technology cell library, such as CMOS TSMC 0.35, constraining the cells used in 
the synthesis tool to the ones available for electrical simulation. The synthesis 
process generates an HDL netlist, later translated to a SPICE netlist using a converter 
developed in the scope of this work. 

Stage 3 consists in a SPICE simulation of the module under analysis. Here, it is 
necessary to integrate the SPICE netlist of the module, the electrical input signals 
and a library with logic gates described in SPICE. The resulting electrical 
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information is used to estimate EBbit, ESbit, and ELbit, which is used as input to a 
high-level energy consumption model of a NoC mesh topology. 
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Fig. 5. Parameter acquisition flow for the high-level dynamic energy model. 

4. Application Cores and NoC Models 

Previous works [4, 8] have showed that estimating EBbit, ESbit and ELbit 
parameters requires the knowledge of amount of bit traffic. On the other hand, 
Section 3 showed that the amount of bit transitions affects mostly ELbit and EBbit 
and has small influence on ESbit. In addition, the effect of bit transitions on EBbit and 
on ESbit has a magnitude comparable to the effect obtained by varying the amount of 
bit traffic as described, for example, in [4] and [8]. Finally, ELbit is mostly 
influenced by bit transitions only. This analysis shows the importance of proposing a 
model considering both the amount of bits and the amount of bit transition for 
modeling communication using NoCs. 

This Section defines CWM, a model that captures only the amount of bits and 
proposes EWCM, an enhancement of CWM that also captures the amount of bit 
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transitions in a given communication. These models underlie the structures that 
enable to represent them (CWG and ECWG), as defined below. 

Definition 1: A communication weighted graph (CWG) is a directed graph <C, W>. 
The set of vertices C = {c1, c2…, cn} represents the set of application cores. 
Assuming wab is the number of bits of all packets sent from core a to core b, 
W = {(ca, cb, wab) | ca, cb ∈ C and wab ∈ � *}. The set of edges W represents all 
communications between application cores. 

Definition 2: An extended communication weighted graph (ECWG) is a directed 
graph <C, T>. The set of vertices C = {c1, c2…, cn} represents the set of application 
cores. Assuming wab is the number of bits of all packets sent from core a to core b 
and that tab is the number of bit transitions occurred on all packets sent from core ca 
to core cb, the set of edges T is {(ca, cb, wab, tab) | ca, cb ∈ C, wab ∈ � * and tab ∈ � }. 
The set of edges T represents all communications between these cores, representing 
both, the amount of bits and the amount of bit transitions. 

ECWG is similar in structure to CWG. However, ECWG improves CWG, since 
it captures the number of bit transitions instead of only the number of bits 
transmitted from one core to another. 

While CWM and ECWM model application cores communication, NoCs are 
modeled by a graph that represents their physical components, i.e. routers and links. 
This graph, called CRG, is defined next. 

Definition 3: A communication resource graph is a directed graph CRG = <R, L>, 
where the vertex set represents the set of routers R = {r1, r2, …, rn} in a NoC, and the 
edge set L = {(ri, rj), ∀ri, r ∈ R} is the set of paths from router ri to router rj. 

Value n is the total number of routers and is equal to the product of the two NoC 
dimensions in 2D mesh topologies. CRG edges and vertices represent physical links 
and routers, respectively, and each router is connected to an application core. 

CWG and ECWG represent the communication of an application composed by 
an arbitrary number of cores. These graphs are evaluated here on a 2D mesh 
topology NoC using wormhole switching and deterministic XY routing algorithm. 
Nevertheless, other NoC topologies can be similarly considered, just changing the 
CRG formulation. 

Fig. 6 illustrates the above definitions using a synthetic application with four IP 
cores exchanging a total of six packets in a 2×2 NoC. Fig. 6 (a) shows a CWG where 
the set of vertices is C = {A, B, C, D}, and the set of edges is W = {(A, B, 80), 
(A, C, 90), (A, D, 100), (B, A, 100), (B, C, 120), (B, D, 80), (C, A, 80), (C, B, 70), 
(C, D, 90), (D, A, 60), (D, B, 50), (D, C, 90)}. Fig. 6 (b) depicts an ECWG for the 
same synthetic application and the same set of vertices. However, each edge also 
contains the amount of bit transitions of the communication. The set of edges is 
T = {(A, B, 80, 40), (A, C, 90, 55), (A, D, 100, 100), (B, A, 100, 30), (B, C, 120, 80), 
(B, D, 80, 25), (C, A, 80, (C, B, 70, 40), (C, D, 90, 35), (D, A, 60, 55), 
(D, B, 50, 25), (D, C, 90, 85)}. Fig. 6 (c) depicts an arbitrary mapping of C onto a 
NoC mesh 2x2, corresponding to a CRG where the set of vertices is R = {r1, r2, r3, 
r4}, and the set of edges is L = {(r1, B), (r2, D), (r3, C), (r4, A)}. 

187

75), 



 

mesh 2x2. 

5. NoC Energy Consumption with CWM and ECWM 
Application Cores Models 

As stated in Section 3, dynamic energy estimation depends on the 
communication infrastructure and on the application core traffic. This Section shows 
how to compute the dynamic energy consumption in a NoC where the application is 
modeled by both CWM and ECWM models. 

Let τi and τj be the tiles to which cores ca and cb, are respectively mapped, and 
wab be the amount of bits transmitted from core ca to core cb. Then, Equation (3) 
shows how CWM computes the dynamic energy consumed on this communication 
by associating wab with Equation (2). 

ECommunicationab = wab × EBitij 
 = wab × (η × (EBbit + ESbit) + (η – 1) × ELbit) (3) 

ECommunicationab is computed differently for ECWM, since ELbit, EBbit and 
ESbit have different values for the amount of bit traffic and for the amount of bit 
transitions. Let 1 be the index representing the fraction of EBitij due to the amount of 
bit traffic only (EBitij1) and let 2 be the index representing the fraction of EBitij due to 
the amount of bit transitions only (EBitij2). Then, Equation (4) relates these amounts 
and Equation (5) expands Equation (4). As stated in Section 3.1, ELbit2 is not 
significant, which allows simplifying Equation (5). 

ECommunicationab = wab × EBitij1 + tab × EBitij2 (4) 
ECommunicationab = η × (wab × (EBbit1 + ESbit1) + tab × (EBbit2 + ESbit2)) 

+
 

(η – 1) × tab × ELbit2 (5) 

For both models, Equation (6) computes the total amount of NoC dynamic energy 
consumption (EDyNoC), i. e. the summation of dynamic energy consumption for all 
communications between application cores. Let D be the set of edges in the model 
graphs, i.e. either W for CWG or T for ECWG. Then, EDyNoC represents the 
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Fig. 6. (a) CWG and (b) ECWG of a synthetic application, and (c) core mapping onto a NoC 



Modeling the Traffic Effect for the Application Cores Mapping Problem onto NoCs 
 

objective function for the NoC mapping problem considering the use of CWM and 
ECWM models. 

EDyNoC = !
" Dab ab

ionCommunicatE  (6) 

6. Experimental Results 

6.1 Estimation Tool 

A framework called CAFES (Communication Analysis For Embedded Systems), 
developed in the context of this work, supports the generation of experimental results 
based on the equations developed before. CAFES enables to evaluate mappings of 
application cores into NoCs. The behavior of an application can be described with 
models that consider different aspects, with respect to computation and 
communication. Fig. 7 shows the starting window of CAFES graphical user interface 
(GUI). Here, the user can choose one of six application models, and also describe 
some of the NoC parameters. 

and supports the specification of NoC topology and NoC energy consumption parameters. 
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Fig. 7. Starting window for the CAFES framework GUI. It displays application model choices 



According to the choice of NoC topology, NoC energy parameters and 
application model, CAFES estimate the energy consumption of different mappings 
for each application. It also helps finding mappings to reduce communication 
latency. 

Fig. 8 shows a 2D mesh NoC with a mapping obtained after algorithm execution. 
All application resources are annotated with the computed dynamic energy 
consumption caused by the bit traffic. 

Fig. 8. A mapping of application cores onto a 2×4 NoC mesh topology. Each link and router is 

CAFES implements algorithms mixing simulated annealing and simulated 
evolution approaches for both, CWM and ECWM models. The only difference 
between these algorithms is the employed mapping objective functions. Each 
function considers different NoC energy parameters. Comparing the results achieved 
with CWM and ECWM algorithms, it is possible to evaluate the impact of traffic on 
mappings. When compared to CWM, experimental results showed that the increased 
detailing of ECWM does not significantly affect the algorithm complexity neither in 
terms of memory usage nor in CPU time. 

6.2 Benchmarks and Results 

This Section presents experimental results of estimating dynamic energy 
consumption for 11 applications. There are 5 embedded applications and 6 synthetic 
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integration (R) [16], object recognition and image encoding (O). 

Total amount (in Mbits) 
Application NoC size Number of cores 

Transmitted Bit transitions 
3 × 4 (V) 12 4,268 815 
4 × 5 (M) 17 3,780 720 
6 × 6 (F) 33 343 170 
7 × 7 (R) 49 219 175 

Embedded 

8 × 8 (O) 64 65,555 20,934 
5 × 5 22 120 [0, 120] 
7 × 9 60 450 [0, 450] 
8 × 8 62 2,390 [0, 2,390] 
10 × 8 77 3,456 [0, 3,456] 
10 × 11 107 567,777 [0, 567,777] 

Synthetic 

10 × 12 115 23,432 [0, 23,432] 

* [minimum, maximum]: synthetic applications exhaustively explore the full range of bit transition values. 

 

The NoC size is the number of CRG vertices and the Number of cores 
corresponds to the number of CWG or ECWG vertices. The Total 
amount/Transmitted column reflects the number of bits transmitted during 
application execution, and is used on both models, while the Total amount/Bit 
transitions column is used only on the ECWM model. This last column represents 
typical values of bit transitions for each embedded application, which can be 
extracted from functional simulation. For synthetic applications the column 
represents minimum and maximum limits for bit transitions. Here, both limits are 
explored to evaluate the difference from minimum to maximum energy consumption. 

NoC size CWM(mJ) ECWM(mJ) CWM/ECWM(%) 
3 × 4 2.47 2.09 18.18 
4 × 5 2.53 2.23 13.45 
6 × 6 0.65 0.63 3.17 
7 × 7 0.33 0.25 32.00 
8 × 8 35.98 31.40 14.59 

Average 8.39 7.32 16.28 

 
For each application, the best mapping achieved with the CWM algorithm is 

compared to the best mapping achieved with the ECWM algorithm. As CWM does 
not consider the bit transition effect, to minimize the error of using this model this 
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Table 1. Application features. Embedded applications are Video Object Plane Decoder (V) 

summarizes applications features and required NoC size. 

[14], MPEG4 decoder (M) [14], Fast Fourier Transform (F) [15], distributed Romberg 
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Table 2. Dynamic energy consumption of embedded applications with mappings obtained 
with CWM and ECWM mappings algorithms. 

applications generated by a proprietary system similar to TGFF [13]. Table 1 



 work proposes to employ the average bit transition consumption to compute the 
values for bit energy parameters. To do so, EBit values were estimated according to 
the average case. Even with this measure, the CWM mapping algorithm still does not 
lead to best mappings competitive with the results of the ECWM mapping algorithm. 
Table 2 and Table 3 compare the results for both algorithms. 

Table 3. Comparison of dynamic energy consumption for synthetic applications after applying 
CWM and ECWM mappings algorithms. 

Minimum bit transitions Maximum bit transitions 
NoC size CWM(mJ) 

ECWM(mJ) CWM/ECWM(%) ECWM(mJ) CWM/ECWM(%) 
5 × 5 0.47 0.35 33.33 0.34 38.89 
7 × 9 0.76 0.52 44.93 0.53 42.86 

8 × 8 2.22 1.49 49.25 1.40 58.73 

10 × 8 2.36 1.70 38.89 1.77 33.33 

10 × 11 275.10 178.82 53.85 184.32 49.25 
10 × 12 13.11 8.26 58.73 9.05 44.93 

Average(%) 49.00 31.86 46.50 32.90 44.67 

 
Table 2 and Table 3 show an improvement of respectively 16.3% and 45.6% on 

dynamic energy savings, when comparing ECWM and CWM mappings. The second 
value is the average between minimum and maximum bit transition improvements. 
Synthetic applications differ more than embedded ones. This is due to the fact that 
for synthetic applications the minimum and maximum bit transition amount values 
are used and not a typical bit transition. The objective here is not obtaining precise 
estimations, but to show how the bit transition effect can influence mapping results. 

7. Conclusions 

This paper addressed the problem of mapping applications cores onto tiles of 2D 
NoC mesh topologies. It emphasized the importance of bit transition on traffic 
modeling for dynamic energy consumption estimation. 

The first contribution is the dynamic energy consumption analysis with different 
traffic patterns and its effect in different NoC modules, i.e. router input buffer, router 
control logic and links. The analysis showed the importance of considering the bit 
transition amount together with the amount of bits transmitted between application 
cores to achieve quality mappings. Often, solutions to the mapping problem aim at 
minimizing dynamic energy consumption in the communication infrastructure. It has 
been shown here that dynamic energy consumption grows linearly with the amount 
of bit transitions. In the conducted experiments, bit transitions affect the dynamic 
energy consumption by as much as 6400% for links, 180% for router input buffers 
and 20% for router control logic. 
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Weighted Model (ECWM), which builds on a previously proposed model, called 
Communication Weighted Model (CWM). While CWM only captures the amount of 
bit traffic, ECWM also contemplates the amount of bit transition. The conducted 
experiments showed that ECWM obtains significant energy consumption savings 
when compared to CWM in all cases. 

Data to build CWM and ECWM are easily extracted from application simulation, 
even for large systems. In addition, the experiments showed that ECWM is more 
accurate for dynamic energy consumption estimation with low extra computational 
effort when compared to CWM. 
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Abstract. This paper presents an innovating methodology for fast and easy 
design of Asynchronous Network-on-Chips (ANoCs) dedicated to GALS 
systems. A topology-independent building-block approach permits to design 
modular and scalable ANoCs with low-power and low-complexity 
requirements. A crossbar generator is added to the existing design flow for fast 
system architecture exploration. A multi-clock FPGA allows a fast prototyping 
of complex ANoC-centric GALS systems. A demonstrative platform is 

cores and asynchronous modules connected through an asynchronous 6x6 
crossbar. Results about communication costs across the Asynchronous NoC 
and synchronous/asynchronous interfaces are reported. 

1 Introduction 

GALS paradigm is to partition a system design in decoupled clock-independent 
modules [1]. Design parameters of each block can be adjusted independently 
(performance, power consumption or clock-tree management to name but a few). 
Another benefit of GALS paradigm is to separate the design of communication from 
functionality by using handshake protocol synchronization (amongst other 
techniques).  

Asynchronous NoCs (ANoCs) strongly benefit to such a globally asynchronous 
design methodology. Clockless interconnect networks improve reliability by 

arbiters for solving routing conflicts [2, 3]. Global design constraints are released. 
They also offer robust communications thanks to an automatic data transfer 
regulation (elastic pipeline): no data item can be lost or duplicated. Moreover, 
regular distributed network topologies (any topology based on point-to-point links, 

removing clock-domain crossing synchronizations and by using delay-insensitive 

implemented onto an Altera Stratix FPGA. It includes synchronous standard IP 

Springer), pp. 195–207. 
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such as meshes, tores or crossbars), built of independent routing nodes, fully exploit 
modularity and locality design properties of asynchronous circuits. To illustrate these 
benefits of using ANoCs for GALS systems, several publications bringing major 
research contributions can be cited.  

In [4] a stoppable clock methodology, based on asynchronous wrappers around 
synchronous blocks, is used to compare topology performances by using ad-hoc 
synchronous peripherals adapted to the asynchronous networks. Such techniques 
need training sessions and suffer from PVT sensitivity [21] and from penalties in 
restarting the clocks. 

Beigne et al. present in [3] an asynchronous mesh topology providing a high 
Quality-of-Service (QoS), using a multi-level design flow. This very efficient ad-hoc 
architecture is dedicated to a specific application and has a high complexity cost. 
Bolotin and al. use in [5] a generic architecture to evaluate four classes of packet 
services. After a training session on every class, the most appropriate service is 
implemented onto a point-to-point link between two components, according to the 
communication requirements. This NoC architecture is more modular than [3] but 
for a higher complexity cost. 

In [6] and [7], Bainbridge and Lovett develop a modular and low-complexity 
ANoC design methodology, using simple one-to-two and two-to-one switches to 
build regular topology networks. In such structures, arbiters are very simple and so 
efficient for packet routers with few channels to drive. However, assembling these 
switches will heavily increase latency and area costs for large multi-inputs/outputs 
routers.  

Compared to these works, our purpose is to provide a simple and flexible generic 
structure which allows fast design of a large spectrum of ANoC topologies for GALS 
systems requiring efficient communications at a low complexity cost. According to 
this motivation, this paper presents in section 2 a topology-independent structure 
which is strongly modular, scalable and robust and which permits by using accurate-
function building blocks to design ANoCs for high-reliability, low-power and low-
complexity requirements. Section 3 gives some details of the self-timed FIFO 
structure to interface synchronous and asynchronous domains. Section 4 details the 
design flow methodology. A crossbar generator has been developed for fast system 
architecture exploration. As such a flexible ANoC structure is well-suited for rapid 
GALS system prototyping [9], we remind a special methodology [8] to synthesize 
asynchronous modules onto FPGA, with an extension for non-deterministic arbiter 
circuits [9]. In section 5, this methodology is applied to implement an ANoC-centric 
GALS system onto a multi-clock Altera Stratix FPGA. It includes synchronous 
standard IP cores and asynchronous modules connected through an asynchronous 
6x6 crossbar. Results about performances of the Asynchronous NoC are reported as 
well as a peripheral-to-peripheral communication cost (across both the ANoC and 
the synchronous/asynchronous interfaces). 
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2 Asynchronous NoC design  

Our methodology fully exploits the modularity of asynchronous circuits. We provide 
a basic layered structure of ANoC with no predefined topology, by using a building-
block approach. Each block or layer has been accurately defined to efficiently deliver 
one of the major functions of an interconnect network (these functions are detailed in 
section 2.2 with the description of each block):   

- service-level communication protocols, 
- synchronization interfaces at mixed-timing domains,  
- signal-level information transport,  
- packet arbitration and routing in interconnect nodes.  

Moreover, the basic blocks have been designed with an objective of reliability 
improvement (section 2.1) and with respect to low-complexity, “easy-plug” and 
scalability features. The result is a simple and flexible structure having efficient 
latency and throughput and a wide variety of high-level services at low-complexity 
and low-power costs. Such structure allows fast design of any ANoC regular 
distributed topology. 

2.1 Focus on synchronization bolts 

Our methodology for designing ANoCs is focused in part on solving synchronization 
problems. The two major synchronization bolts for a GALS system are: 
synchronization at clock domain boundaries and arbitration between concurrent 
requests [14]. Such circuits have a non-deterministic behavior. We put special invest 
to improve reliability/performance tradeoffs of these synchronizer circuits.  

Clocked synchronization. As discussed in the introduction, using an ANoC is in 
itself a reliability improvement by removing clock-domain crossing synchronizations 
through the interconnect network. However clocked synchronizers are still required 
between Synchronous peripheral Blocks (SB) and the ANoC. Discussion on this 
synchronous/asynchronous interface is developed in section 2.2 and structural details 
are given in section 3. 

Delay-insensitive arbiters.  Arbitration circuits, or simply arbiters, are required 
where a restricted number of resources are allocated to different user or client 
processes. Packet routers are such cases. In the case of an ANoC, delay-insensitive 
arbiters have this main advantage of being hundred-percent reliable (enough time is 
given to resolve metastability). Reliability of on-chip communication systems is 
becoming a major issue since the increase transaction rates are drastically reducing 
the so-called Mean Time Between Failure characterizing clocked synchronizers. In 
[2] we present a class of delay-insensitive arbiters which decouple the sampling of 
incoming requests from the arbitration process in a strong modular and reliable 
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2.2 Modular ANoC structure  

We cut out the construction of ANoCs in five basic components or layers, as 
illustrated in Fig. 1.  

 

Fig. 1. ANoC-centric GALS architecture: a) abstract structure b) layered structure 

1. Wrapper Adaptor (WA). This resource is required to translate between the 
communication protocols used by a synchronous or asynchronous peripheral and the 
interconnect network. The WA component adapts both flit and packet levels of the 
communication protocols. The details of these protocols are beyond the scope of this 
paper [3].  

2. Synchronization & Performance Interface (SPI). This component binds the 
SB clock domain with the ANoC using a FIFO decoupling method. The SPI consists 
of a standard double flip-flop (DFF) synchronizer and of an asynchronous FIFO. 
Such simple synchronization interface facilitates plugging of standard synchronous 
IP cores. 

198



 
The DFF resynchronizes asynchronous signals with the SB clock. The DFF 

offers actually a very sufficient reliability/latency tradeoff (two clock cycles per 
input signal sampling) [15], compared to numerous clocked synchronizer’s 
improvements [16]. 

The asynchronous FIFO transforms the synchronous protocol in the 
corresponding asynchronous protocol, adapting relative speeds between the SB and 
the ANoC. For AB, such a FIFO is optional and can be used for pipeline 
performance optimization. In this case we call it Performance Interface (PI) (Fig. 1). 
Details of the asynchronous FIFO structure are presented in section 3. This 
architecture is based on an existing asynchronous FIFO [17]. The level of parallelism 
between data and control flows is improved and two versions are delivered: a low-
latency version or a low-power consumption version, according to design 
requirements. 

3. Packet Transport (PT). This resource adapts the physical level (or signal-
level) of the communication protocol. The PT component provides successive 
protocol conversions from SPI component to delay-insensitive NoC core for best 
power consumption and robustness. Between SPI and PR layers, bundle data 
protocols are converted in delay-insensitive protocols for better robustness. Between 
the packet routers (PR layer), the four-phase protocols can be converted in 2-phase 
protocols for long interconnect links for lower power consumption and higher speed 
[18].  

4. Parallel-Request-Sampling Priority-Arbiter (PRS-PA). This resource 
provides a self-timed arbiter with a decoupled arbitration process and a 100% 
reliable request sampling structure based on delay-insensitive parallel synchronizers 
[2, 19] (section 2.1). 

5. Packet Routing (PR). This resource offers a modular routing of data items for 
transaction services (packet level services such as burst mode or split transactions). 
PRS-PA and PR resources are parts of ANoC routing nodes, as detailed in section 
2.3.  

2.3 Switches architecture for ANoC routing nodes 

Packet router is the core component of an interconnect network. The packet routers 
are assembled with modular elementary blocks, as shown in Fig. 2, with the same 
objectives of low-complexity, easy “plug-and-play” and scalability as for the 
complete ANoC. 

Emitter module. Fig. 2 illustrates two switch instances. The n-to-1 switch, or 
Emitter, is built around the PR (Packet Router) and PRS-PA (Priority Arbiter) 
components, as previously presented in section 2.2. The PR resource is decomposed 
in three modules: Packet Analyzer (PA), Data Path Controller (DPC) and MUX 
module. The Emitter component delivers two major classes of packet level services: 
arbitration service and transaction service. The PA block decodes Channeli_ctrl 
message in order to extract arbitration and transaction information parts and to drive 
it respectively to the PRS-PA and DPC modules. Arbitration information is 
composed of Request and Priority_level (optional) channels, used by the PRS-PA 
module to arbiter incoming requests. Once a Channeli_data is elected, PRS-PA 
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informs the datapath controller module (DPC) through Selected_Channel. DPC 
exploits it and the Transfert_mode channel to control data flow on the elected 
Channeli_data and to drive the switch output (MUX module). Through 
Transfert_mode channel, transaction information delivers packet status, such as 
single flit packet or for burst mode: start-packet flit, body flit, end-of-packet flit. 
Once the packet transfer is achieved, DPC module informs the sleeping arbiter 
module PRS-PA through Sampling channel that a new transaction can start. 

Receiver module. The 1-to-m Switch, or Receiver, is a PR component which 
realizes the dual operation by driving the input (Packet_Ctrl and Packet_Data 
channels) to the selected Target_Address. No arbitration is needed here. By 
composing these switches we can build in short design time fast and efficient routing 
nodes (sections 4.2 & 5.1). 

Fig. 2. Switch components: a) Emitter (n-to-1 switch) b) Receiver (1-to-m switch) 

3 Asynchronous FIFO for mixed domain interfaces 

3.1 Reference work 

Chelcea and Nowick present in [17] several mixed-timing FIFO designs. The designs 
are implemented as a core of micropipeline-style circular arrays of identical cells 
connected to common data buses. Data items are not moved around the array once 
they are enqueued, preserving power consumption. Control is made with two tokens: 
the first one allows enqueuing data whereas the second one allows dequeuing data. 
This asynchronous array is scalable and modular and offers very low latency.  

The core of these asynchronous FIFO cells are used to design instances of 
double-clock FIFOs and in our concern mixed synchronous/asynchronous FIFOs.  

But we decide not to use this mixed version of the FIFO. Indeed, our GALS 
architectures integrate heterogeneous Synchronous peripheral Blocks (SBs) 
communicating across the ANoC. These synchronous and asynchronous domains 
will present very different working speeds. In such a situation, the mixed-timing 
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version of the FIFO (interfacing a SB with an ANoC routing node) can not guarantee 
one write or read operation per cycle on its synchronous part (SB side). The FIFO 
will often be empty or full and speed performances will be degraded by a global 
three clock cycles latency cost, due to complex FIFO-state detector interfaces. 
Preliminary result analysis on the FPGA platform confirms large different speeds 
between SBs and high-speed ANoC (section Error! Reference source not found.). 

To avoid the use of such latency-penalizing interfaces, an improved version 
(section 3.2) of the fully asynchronous FIFO is provided to interface synchronous 
and asynchronous working domains. The FIFO is connected to a standard DFF 
synchronizer which reduces the latency to two cycles. This solution is robust (section 
2.1) and efficient to adapt domains with large difference in working speeds. The next 
section briefly describes how we improved the self-timed FIFO architecture. 

3.2 Improved asynchronous FIFO 

The architecture of the fully asynchronous FIFO is transformed in two ways to 
improve its performances.  

1. Improved level of parallelism. This architecture has a limited degree of 
parallelism between control and data paths (token passing and data 
enqueuing/dequeuing operations). We use the TAST tool suite (see section 4) 
features to improve it, and consequently to improve the speed of the FIFO. A FSM 
modeling of the FIFO in CHP language allows a decoupling of token passing and 
data enqueuing/dequeuing operations. TAST synthesizer options allow to parameter 
the synchronization point between these operations and therefore ensure the 
correctness of the FIFO. Both delay-insensitive and micropipeline versions of a 
FIFO can be synthesized. 

2. Low-power and fast architecture exploration. The common data buses give 
increasing power consumption penalties for deep FIFOs. Moreover, the bus buffers 
have to be re-designed for each new FIFO size. We replace these high-loaded buses 
with two components called One-to-Two Sequential switch (OTS) and Two-to-One 
Sequential switch (TOS). These components are bonded in a vertical binary tree of 
switches as shown in Fig. 3. 

Fig. 3 shows the horizontal array of FIFO cells (FC) with the distributed right-to-
left token passing control path [17]. Data items move vertically across a path of OTS, 
FC and TOS components. Each OTS component is a 1-to-2 demultiplexer with 
automatic toggle. Each data item is alternatively driven to one of both output paths, 
starting on the right path. The TOS components are the reciprocal 2-to-1 
multiplexers, receiving the first data item on the right input path and then 
automatically switching from one input to the other. A version with one-to-three and 
three-to-one switches can be provided to extend the available size of the FIFO. 
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Fig. 3. FIFO structure with mux/demux trees 

This architecture ensures the correctness deadlock-free operations of the FIFO. 
OTS and TOS components work as supplementary data memorization cells. 
Moreover, the cell structure for data paths is identical for FC, OTS and TOS 
components, i.e. a data latch added to a Muller gate which controls channel request 
signal. Consequently, the input and output loads of each cell are balanced. Compared 
to the common bus solution, the mux/demux binary trees solution provide the 
following features: design of the FIFO is simplified, scalability and power 
consumption are improved and latency is degraded (but throughput is identical). 

a high degree of parallelism is delivered to robustly interface SB and ANoC modules 
in an ANoC-centric GALS system. Two versions are available: a mux/demux binary-
tree version for fast system architecture exploration (especially for optimal FIFO 
size) and low-power; and a common-bus version for low-latency requirements. 

4 Design flow 

4.1 Design methodology 

We specify and model asynchronous circuits in CHP (for Communicating Hardware 
Processes), a high-level description language based on communicating processes [10, 
11]. The processes are synthesized using TAST, a suite tool [12] dedicated to 
asynchronous circuit synthesis. The TAST tool enables to map the CHP specification 
onto a standard-cell library and/or a specific cell library [13] when targeting ASICs, 
or to map onto FPGA for rapid system prototyping [8, 9].  
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4.2 Automatic crossbar generation 

We use an automatic crossbar topology generation tool to implement the 6x6 
crossbar ANoC. The tool controls adjustable design parameters for some of the five 
ANoC modular blocks/layers. It supports fully-interconnect or Octagon [20] 
topology generation and modular routing node cores generation, which can be hand-
adapted and assembled in more complex regular interconnect topologies, such as 
meshes. The choice of crossbar or fully-interconnect topologies ensures a fast, 
flexible and low-complexity system architecture exploration. It allows implementing 
efficient Emitter and Receiver components in terms of routing complexity, latency 
and throughput and in terms of control cost. The Receiver component supports high 
packet service extensions thanks to its high modularity. 

So far, the adjustable parameters are: 

1. Crossbar size. It depends of the number of the system’s components. 

defined according to the required bandwidth of each p2p linked SB or AB. 

policies are round-robin, FIFG and non-interruptible two-level priority policies. 
The FIFG policy can be programmed independently for each routing node. 

services. For the time being, only the burst mode is available. All routing nodes 
must support the same transaction services. 

4.3 

This methodology is extended in [9] to synthesize arbiter circuits with non-
deterministic behavior, due to their synchronizer elements. A special circuit mapping 
is presented for delay-insensitive synchronizers devoted to asynchronous arbiters. 

This FPGA-prototyping methodology is applied to the clock-less modules of the 
following architecture (ANoC and DES). The ANoC is designed according to the 
modular building method of sections 2 and 3. 

5 Validation platform 

5.1 PACMAN platform 

We demonstrate our network-centric GALS building methodology with a case-study 
implemented on a Stratix Altera FPGA. This system is a first prototype version of a 
generic GALS platform called PACMAN, for Programmable And Configurable 
Multiprocessor Asynchronous Network. 
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This section presents an ANoC-centric GALS architecture implemented onto 

2. Point-to-point (p2p) interconnects width. The width of each interconnect path is 

a multiclock Stratix Altera FPGA. We give in [8] a generic synthesis methodo-

3. Priority algorithm. The priority solving function can be programmed. Available 

logy to properly place and route asynchronous elements or mixed synchronous/ 
asynchronous circuits onto a FPGA, respecting the specific timing assump-

4. Transaction services. DPC module can be programmed to support data transaction 

tions of either QDI or micropipeline (µP) asynchronous design techniques. 

Synthesis of QDI circuits onto FPGAs 
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The PACMAN first-version architecture is shown in Fig. 4. It includes an ANoC 
interconnecting four processing elements.  

The asynchronous NoC is a 6x6 crossbar, but it is used in fact as a 5x5 crossbar, 
with for processing elements and a direct output parallel communication link. There 
is no pipelining in this version of the ANoC even though higher throughput could be 
easily obtained by applying asynchronous pipelining techniques. The ANoC delivers 
both arbitration and transaction services (section 2.4). The arbitration policy is a non-
interruptible two-level priority policy. When concurrent incoming requests need 

requests are suspended. For equal priority-level concurrent requests, a First-In First-
Granted (FIFG) policy is used. A former selected channel can not be interrupted by 
an incoming higher priority-level request during a burst mode data transfer. The 
high-priority level is assigned to the MIPS processors. The transaction service 
delivers burst mode or simple on-flit packet transfer modes, plus a special service 
called Indirect-Response (IR). In IR mode, a peripheral A, initiator of a 
communication, notify the receiver B not to answer to A, but to a third peripheral C. 

The four processing elements are: 

- Two independently clocked MIPS with local RAM banks and serial 

whereas the other MIPS is running at 50MHz for number crunching applications. 
- A self-timed DES module (Data Encryption Standard). 
- A shared RAM bank. 
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Interface

MIPS2

45MHz

RAMMIPS1
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RAM

ROM ROM

RS232RS232

RS232 Interfaces
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RS232RS232
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5.2 Performance of the communications 

The Stratix Altera FPGA platform we have been using successfully supports the 
PACMAN architecture implementation. Characteristics of the FPGA are the 
following: 

- device EP1S40F780C5 (40k gates), 
- pin count 780, 
- speed grade 5 
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communication links. One MIPS is running at 45MHz for interfacing purposes 

arbitration, a request with the high-priority level is selected and low-priority level 

Fig. 4. Structure of PACMAN case-study version for FPGA implementation 



 
Implementing a 6x6 crossbar (used in fact as a 5x5) Asynchronous NoC onto the 

FPGA involves: 

- 13458 LUTs and 0 registers for packet router modules (see section 2.3) 
- for communication between peripherals, interfaces including WA, SPI and PT 

registers. 

Table 1 shows latencies and throughput of the ANoC without interfaces. Cycle 
time is the direct flit latency from one packet router (Emitter module) to another 
packet router (Receiver module) plus the backward acknowledge propagation time. 
Table 2 shows latencies and throughput between MIPS1 (50MHz) and MIPS2 
(45MHz) across ANoC and interfaces. 

As mentioned before, these data transmission rates can easily be improved with 
pipelining. 

Table 1.  Latencies and throughput from packet router to packet router in the ANoC 

 Direct latency 
(ns) 

Cycle time (ns) 
(delay between 
flits) 

Throughput 
(Mflit/s) 

Throughput 
(MBps) 

Burst Mode 43,3 57,2 17,5 630 
Simple Mode 45,9 61,7 16,2 583,2 

Table 2.  Latencies and throughput between MIPS1 and MIPS2 across ANoC and interfaces 

Direct latency (ns) Interface 
clock 
frequency 
(MHz) 

Data 
transfer 
mode and 
packet 

start-
paquet flit 

body or 
end-of-
packet flit 

Cycle time 
(ns) (delay 
between 
flits) 

Throughput 
(Mflit /s) 

Throughput 
(MBps) 

50 Burst 50 31 120 8,3 266,6 
50 Single 76 57 141 7,1 226,9 
66 Burst 60 53 105 9,5 304,7 
66 Single 72 64 121 8,2 264,5 

90,9 Burst 43 31 77 12,9 415,6 
90,9 Single 68 62 100,4 9,9 318,7 
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modules are involved (see section 2.2). Each interface involves 218 LUTs and 90 
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Conclusion 
In this paper we provide a simple and flexible structure of Asynchronous NoC for 
GALS systems requiring efficient communications at low-complexity and low-
power costs. Such a structure is modular, robust and scalable. The interconnect 
topology generator delivers several configurable interconnect topologies which 
facilitate the system architecture exploration, helped by a scalable and easy-to-plug 
(flexible?) self-timed FIFO. Then a low-latency FIFO version can be instantiated in 
the final architecture. Using a multi-clock FPGA allows a fast prototyping of a 
complex ANoC-centric GALS system with mixed synchronous and asynchronous 
components. First result analysis gives promising ANoC abilities to deliver fast and 
robust communications. Another PACMAN version has been successfully 

implementing four independently clocked MIPS interconnected by the AnoC. 
Closely analyses of the FPGA platform are currently performed to extract complete 

and GALS system design. 

services. Another work will be to integrate formal verification methods into the 
design flow. The aim is to deliver a dedicated synthesis tool for asynchronous 
interconnect networks generation. 
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Abstract. In this paper, we propose and demonstrate a new MicroPhotonic 

optical cavity, optical components and a photoreceiver array. The structure is 
inherently immune to optical interference thereby routing an optical header 
within optical cavities to different photo receiver elements to generate the 
autocorrelation function, and hence the recognition of the header using simple 
microelectronic circuits. The proof-of-concept of the proposed MicroPhotonic 
optical header recognition structure is analysed and experimentally 
demonstrated, and results show excellent agreement between measurements 
and theory.  

1. Introduction 

The rapid and global spread of the internet is accelerating the growth of optical 
communication networks and the demand for more bandwidth has driven the use of 
photonic technology in telecommunication and computer networks. The diversity of 
future services will require high-capacity optical networks featuring dynamic and 
high-speed routing and switching of data packets [1], [2]. 

The new generation very high-bit rate optical packet switched networks require a 
potentially faster approach to decode the header bits optically so that a given routing 
decision can be made on-the-fly. Currently, to make routing decisions, optical 
packets are converted into the electrical domain and electronic signal processing is 
used to recognize the optical headers, as shown in Fig. 1 [3]. This approach cannot 
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handle the high data rates of future generation packet switched optical networks, and 
this issue is currently the bottleneck for recognizing high-speed optical headers in 
future optical networks [4].  

Fig. 1. Conventional optical packet switching node 
 

Correlation is an important signal-processing function that is commonly used to 
recognize an incoming pattern by comparing it with a predetermined pattern. At the 
appropriate sample time, a high-amplitude lobe is produced if the input pattern is an 
exact match to the predetermined pattern. Optical Header recognition based on 
optical correlation is a promising concept to perform the header pattern optically by 
using time-domain correlator to match it to a lookup table constructed using a bank 
of optical correlators, as illustrated in Fig. 2. The stream of information from source 

a payload. An optical tap is used to bypass a small power of the optical packets. This 

M optical correlators of different predetermined patterns. Each correlator is assigned 
a single destination address and designed to generate an electrical waveform that 
represents the correlation function between its destination address and the present 
optical header. By sampling the various correlation signals and comparing them, 
using comparators, to threshold levels, only one autocorrelation function is 
generated, which corresponds to the correlator whose destination address matches 
the optical header pattern. Control signals are generated and fed into the control ports 
of the N-port optical switch that routes the transmitted packets to their next hops [5]. 

Fig. 2. Generic concept of optical header recognition using optical correlators  
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small power is uniformly split using the 1 M optical splitter, and distributed into 
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Fibre-based optical correlation techniques have been investigated for several 
years for their potential to recognize high-speed incoming bit streams, with 
essentially no latency. Numerous optical correlator designs have been proposed and 
experimentally demonstrated including the use of fibre matched filter [6],[7], 
spectro-holographic filter [8], optical AND gates [9],[10], loop mirror configurations 
with semiconductor optical amplifier [11], integrated optical chip [12], optical serial 
to parallel conversion [13–15], time stretching technique [16], and Opto-VLSI 
processor [17]. These designs suffer from high power requirement and low 
efficiency. Recently, a set of fibre Bragg gratings (FBG) in conjunction with a single 
photodetector have been proposed to construct a fibre-based optical correlator for 
optical header recognition [18-26]. FBG-based correlators have some specific 
advantages over other designs, however, they are susceptible to optical interference 
caused by the detection of delayed optical bits using a single photodetector when the 
coherent time of the optical signal is higher than the bit time delay created by the 
FBGs. This effect severely limits the stability of the correlation output and hence 
degrades the service and reliability of the optical network. 

In this paper we propose and demonstrate a new structure for header recognition 
using a new MicroPhotonic structure that integrates an optical cavity, optical 
components and a VLSI photoreceiver array. The structure is scalable, and inherently 
immune to optical interference. This paper is organized as follow; in section 2 is the 
proposed MicroPhotonic optical header recognition structure, experimental setup and 
results are in section 3, and the paper is concluded with some remarks in section 4. 

2.  MicroPhotonic Optical Correlator Structure 

Fig. 3 schematically illustrates the MicroPhotonic correlator architecture for optical 
header recognition of the present invention. The small power of the optical packet, 
which consists of the optical payload and the optical header, is by-passed from the 
optical fibre using the optical tap (about 10% is tapped). The 1xN optical splitter 
equally splits the tapped optical packet into N packets. The microlenses are 
appropriately etched into the optical substrate in order to convert the in-fibre optical 
packets into collimated optical beams. Each collimated optical beam propagates 
within the optical substrate and undergoes several reflections in a cavity whose width 
is defined by the mirror and the diffractive optical element (DOE). Every time a 
beam hits the DOE, a small fraction of its power is transmitted through the DOE for 
detection and amplification by an element of the wideband photoreceiver array that 
is integrated on the surface of the optical substrate, while the remaining large 
fraction is reflected and routed for subsequent delayed photodetection. The 
amplitude of a received optical signal can be set to a low value (0) or a high value (1) 

adjusting the photoreceiver’s amplifier gain. Each element of the 
combiner/comparator array adds the amplified photocurrents of a photoreceiver row 
and generates an output signal. An autocorrelation function of a very high peak is 
generated whenever the optical header matches a pattern of the correlator, while for 
all other patterns, only low intensity cross-correlation functions are produced. 
Threshold detectors (comparators) are used at the outputs of the optical correlators to 
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provide an electrical match/no-match signal to the optical switch that uses these 
signals to determine to which output port each packet should be forwarded. 

Fig. 3. MicroPhotonic correlator architecture 

Fig. 4 schematically illustrates the interface between the photoreceiver array and 
the optical substrate and also illustrates the propagation of the optical beams inside 
the optical substrate. The optical packet propagating in the input fibre is converted 
into a collimated optical beam via the microlens. The glass layer is used over the 
photoreceiver chip for protection. The DOE is inserted between the photoreceiver 
chip and the optical substrate. The DOE comprises two sections. The first section is 
the beam router, which is a hologram capable of steering collimated optical beam, 
while the second section (dashed) acts as a lens relay that prevents the cavity beam 
from diverging as it propagates along its optical path, and also maintains its diameter 
within an adequate range. The DOE can be appropriately coated to provide any 
desired reflectivity. As the cavity beam hits the DOE, a large portion of its power is 
reflected inside the optical cavity and its diameter is equalized for subsequent 
propagation, while a small fraction of its power is transmitted through the DOE and 
the glass layer and then detected by one of the photoreceivers. For a cavity length L 
and a photoreceiver spacing d, the steering angle, , of the beam router is 
arctan (d/2L). The output sequence from the correlator is given by: 
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input signal, and hj represents the gain of the jth photoreceiver element. Fig. 3 also 
illustrates an example for 4-bit header ‘1101’ and shows the output signal from the 
combiner when the gain profile matches the header sequence. 

Fig. 4. Interface between the photoreceiver chip and the DOE 

3.  Experimental setup  

To demonstrate the concept of the proposed header recognition architecture, we 
constructed a 4-bit experiment shown in Fig. 5. An HP 70841B pattern generator was 
used to generate a 4-bit packet at 16.1 Mbit/s, which intensity modulates a 1550nm 
optical carrier generated by an Agilent 8164A laser source, through a Mach-Zhender 
electro-optic modulator. The intensity modulated optical signal is equally split into 
four output fibre delay ports, each port delays the signal 1 bit-time longer than the 
previous branch using single-mode fibre line delays. A photoreceiver array, which 
integrates four discrete photodetectors, four variable-gain transimpedance amplifiers, 
and an RF combiner, were designed to provide arbitrary gain patterns by simply 
switching the amplifiers gains between “HIGH” and “LOW” levels.  
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Fig. 5. Correlator experimental setup 
 
The correlator is first configured to match a header pattern of “1011”. This is 

accomplished by reducing the gain of the second transimpedance amplifier to a low 
value, corresponding to the “0” state, and increasing the gains of the other amplifiers 
to high levels, which correspond to “1” states. The output electrical signal from the 
RF combiner is monitored by an HP 54120A 20 GHz digital oscilloscope.  

Fig. 6 shows the measured and simulated output waveforms for the 1011 optical 
header. A good agreement between theory and experiment is seen, and a stable 
output autocorrelation is demonstrated with no optical interference. A symmetrical 
autocorrelation function with high amplitude (spike) is clearly displayed when the 
input pattern matches the amplifier gains. 

Fig. 6. i) Experimental results matched pattern, ii) simulation result matched pattern 
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The correlator is also configured to match a header pattern of “1110”. This is 
accomplished by reducing the gain of the fourth transimpedance amplifier to a low 
value, corresponding to the “0” state, and increasing the gains of the other amplifiers 
to high levels, which correspond to “1” states. The output electrical signal from the 
RF combiner is monitored by an HP 54120A 20 GHz digital oscilloscope.  

Fig. 7 shows the measured and simulated output waveforms for the 1110 optical 
header. Again, high amplitude (spike) is seen when the input pattern matches the 
amplifier gains, and a good agreement between theory and experiment is 
demonstrated, with no optical interference displayed. .  

Fig. 7. Correlator match output waveform for 1110 header bit stream, 

 
Note that the correlator configured for 1011 will also produce a level “3” peak 

that is above the threshold at time for a “1111” input, which is not the desired bit 
pattern as shown in Fig. 8. Error-free header recognition can be accomplished by 
adding a second correlator that is configured in complement to the first correlator 
which produces a ZERO at the centre of the output correlation when the pattern 
matches the gain profile and ONE otherwise [3], as shown in Fig. 9. 

While the optical correlator enables on-the-fly processing of incoming packets, 
there are some issues associated with packets processing without converting them to 
electronics for header processing and updating. For example, the IP header’s time-to-
live (TTL) field is not decremented and the header checksum is not recomputed, 
whereas protocol requires that both of these operations occur at each network hop. 
One potential solution to this problem is to revise the protocol to allow for packets to 
traverse a small number of core network hops without Optical-to-Electrical (O/E) 
conversion and then update these fields once they reach a fully electronic router at 
the core edge [27]. Optical signal-processing techniques have been developed as an 
alternative approach to directly process these fields in the optical domain where 
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instead of using binary fields within the headers a number of optical pulses are used, 
which correspond to the value of the TTL [28-30]. 

Fig. 8. Output correlation waveform showing a spike in a specific case of header-gain 
mismatch 

Fig. 9. Complement correlator configuration for error-free header recognition  
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4.  Conclusion 

In this paper, we presented a novel MicroPhotonic header recognition architecture 
that is compact, simple to implement, and scalable to higher bit rates. A 4-bit 
correlator module was constructed, using optical fibre delay lines in conjunction with 
discrete photoreceiver elements, and used to experimentally demonstrate the 
recognition of packet headers at 16.1 Mbps. The proposed architecture has 
applications in optical networks and photonic RF signal processing. 
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Abstract - Testing is used to ensure high quality chip production. High test quality implies 
the application of high quality test data; however, the technology development has lead to a 
need of an increasing test data volume to ensure high test quality. The problem is that the test 
data volume has to fit the limited memory of the ATE (Automatic Test Equipment). In this 
paper, we propose a test data truncation scheme that for a modular core-based SOC (System-
on-Chip) selects test data volume in such a way that the test quality is maximized while the 
selected test data is guaranteed to met the ATE memory constraint. We define, for each core as 
well as for the system, a test quality metric that is based on fault coverage, defect probability 
and number of applied test vectors. The proposed test data truncation scheme selects the 
appropriate number of test vectors for each individual core based on the test quality metric, 
and schedules the transportation of the selected test data volume on the Test Access 
Mechanism such that the system’s test quality is maximized and the test data fits the ATE’s 
memory. We have implemented the proposed technique and the experimental results, 
produced at reasonable CPU times, on several ITC’02 benchmarks show that high test quality 
can be achieved by a careful selection of test data. The results indicate that the test data 
volume (test application time) can be reduced to about 50% while keeping a high test quality. 
 
Keywords: Test quality, System-on-Chip, Test data truncation, Test scheduling 
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The technology development has made it possible to develop chips where a 
complete system with an enormous number of transistors, which are clocked at an 
immense frequency and partitioned into a number of clock-domains, is placed on a 
single die. As the technology development makes it possible to design these highly 
advanced system chips or SOC (system-on-chip), the EDA (Electronic Design 
Automation) tools are aiming at keeping up the productivity, making it possible to 
design a highly advanced system with a reasonable effort in a reasonable time. New 
design methodologies are under constant development. At the moment, a modular 
design approach where modules are integrated to a system is promising. The 
advantage with such an approach is that pre-designed and pre-verified modules, 
blocks of logic or cores, with technology specific details, can at a reasonable time 
and effort be integrated to a system. The core provider designs the cores and the 
system integrator selects the appropriate cores for the system where the cores may 
origin from previous in-house designs or from different core vendors (companies). 
The cores can be delivered in various formats. They can in general be classified as 
soft cores, firm cores, and hard cores. Soft cores are general high-level specifications 
where the system integrator can, if necessary, apply modifications. Hard cores are 
gate-level specifications where only minor, if any, modifications are possible. Firm 
cores are somewhere between soft cores and hard cores. Soft cores allow more 
flexibility compared to hard cores. The advantage is that the system integrator can 
modify a soft core. On the other hand, hard cores can be made highly protected by 
the core provider, which often is desirable by the core provider.  

A produced chip is tested to determine if it is faulty or not. In the test process, a 
number of test vectors, stored in an ATE (Automatic Test Equipment), are applied to 
the chip under test. If the produced test response from the applied vectors 
corresponds to the expected response, the chip is considered to be fault-free and can 
be shipped. However, testing these complex chips is becoming a problem, and one 
major problem is the increasing test data volume that has to be stored in the ATE. 
Currently, the test data volume increases faster than the number of transistors in a 
design 21. The increasing test data volume is due to (1) high number of fault sites 
because of the high amount of transistors, (2) new defect types introduced with 
nanometer process technologies, and (3) faults related to timing and delay since 
systems have higher performance and make use of multiple-clock domains 21.  

The high test data volume is a problem. It is known that the purchase of a new 
ATE with higher memory capabilities is costly; hence, it is desirable to make use of 
the existing ATE instead of investing in a new. Vranken et al. 21discuss three 
alternatives to make the test data fit the ATE; (1) test memory reload, where the test 
data is divided into several partitions, is possible but not practical due to the high 
time involved, (2) test data truncation, the ATE is filled as much as possible and the 
test data that does not fit the ATE is simply not applied, leads to reduced test quality, 
and (3) test data compression, the test stimuli is compressed, however, it does not 
guarantee that the test data will fit the ATE. As, test memory reload is not practical, 
the alternatives are test data truncation and test data compression. This paper focuses 
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on test data truncation where the aim is a technique that selects test data for each 
core such that the test quality is maximized for the system while making sure the test 
data volume fits the ATE memory.  

The test data must be organized or scheduled in the ATE. A recent industrial study 
showed that by using test scheduling the test data was made to fit the ATE 5. The 
study demonstrated that the ATE memory limitation is a real and critical problem. 
The basic idea in test scheduling is to reduce the amount of idle bits to be stored in 
the ATE, and therefore scheduling must be considered in combination with the test 
data truncation scheme. Further, when discussing memory limitations, the ATE 
memory depth in bits is equal to the maximal test application time for the system in 
clock cycles 11. Hence, the memory constraint must be seen as a time constraint. 

In this paper, we explore test data truncation. The aim is a technique that 
maximizes test quality while making sure that the selected test data fits the ATE. We 
assume that given is a core-based design and for each core the defect probability, the 
maximal fault coverage when all its test vectors have been applied, and the size of 
the test set (the number of test vectors) are given. We define for a core, a CTQ (core 
test quality) metric, and for the system, a STQ (system test quality) metric. The CTQ 
metric reflects that test data should be selected for a core (1) with high probability of 
having a defect, and (2) where it is possible to detect a fault using a minimal number 
of test vectors. For the fault coverage function we make use of an estimation 
function. Fault simulation can be used to extract the fault coverage at each test 
vector, however, it is a time consuming process and also it might not be applicable 
for all cores due to IP (Intellectual Property)-protection, for instance.  

The test vectors in a test set can be applied in any order. However, regardless of 
the order, it is well-known in the test community that the first test vectors detects a 
higher number of faults compared to the last applied test vectors, and that the 
function fault coverage versus number of test vectors has an exponential/logarithmic 
behavior. We therefore assume that the fault coverage over time (number of applied 
test vectors) for a core can be approximated to an exponential function. 

We make use of CTQ metric to select test data volume for each core in such a way 
that the test quality for the system is maximized (STQ), and we integrate the test data 
selection with test scheduling in order to verify that the selected test data actually fits 
the ATE memory. We have implemented our technique and we have made 
experiments on several ITC’02 benchmarks to demonstrate that high test quality can 
be achieved by applying only a sub-set of the test stimuli. The results indicate that 
the test data volume and the test application time can be reduced to 50% while the 
test quality remains high. Furthermore, it is possible to turn the problem (and our 
solution), and view it as: for a given test quality, which test data should be selected 
to minimize the test application time.  

The advantage with our technique is that given a core-based system, a test set per 
core, a number on maximal fault coverage, and defect probability per core, we can 
select test data for the system and schedule the selected test data in such a way that 
the test quality is maximized and the selected test data fits the ATE memory. In the 
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paper, we assume a single test per core. However, the technique can easily be 
extended to allow multiple tests per core by introducing constraint considerations in 
the scheme.  

The rest of the paper is organized as follows. In Section 2 we present related work, 
and in Section 3 the problem definition is given. The test quality metric is defined in 

�
Section Figure 1. 5. The experiments are presented in Section 6 and the paper is 
concluded in Section 7.  

2. Related Work 
Test scheduling and test data compression are examples of approaches proposed to 

reduce the high test data volumes that must be stored in the ATE in order to test 
SOCs. The basic principle in test scheduling is to organize the test bits in the ATE in 
such a way that the number of introduced so called idle bits (not useful bits) is 
minimized. The gain is reduced test application time and a reduced test data volume. 
A scheduling approach depends on the test architecture such as the AMBA test bus 
6, the test bus 19 and the TestRail 16.  

Iyengar et al. 9 proposed a technique to partition the set of scan chain elements 
(internal scan chains and wrapper cells) at each core into wrapper scan chains, which 
are connected to TAM wires in such a way that the total test time is minimized. Goel 
et al. 5 showed that ATE memory limitation is a critical problem. On an industrial 
design they showed that by using an effective test scheduling technique the test data 
can be made to fit the ATE.  

There has also been scheduling techniques that make use of an abort-on-fail 
strategy that is the testing is terminated as soon as a fault is detected. The idea is that 
as soon as a fault is present, the chip is faulty and the testing can be terminated. 
Koranne minimizes the average-completion time by scheduling short tests early 13. 
Other techniques have taken the defect probability for each testable unit into account 
7,12,14. Huss and Gyurcsik proposed a sequential technique making use of a 
dynamic programming algorithm for ordering the tests 7, while Milor and 
Sangiovanni-Vincentelli present a sequential technique based on selection and 
ordering of test sets 18. Jiang and Vinnakota proposed a sequential technique, where 
the information about the fault coverage provided by the tests is extracted from the 
manufacturing line 12. For SOC designs, Larsson et al. proposed a technique based 
on ordering of tests, considering different test bus structures, scheduling approaches 
(sequential vs. concurrent) and test set assumptions (fixed test time vs. flexible test 
time) 14. The technique takes defect probability into account; however, the 
probability of detecting a fault remains constant through the application of a test.  

Several compression schemes have been used to compress the test data. For 
instance, Ichihara et al. used statistical codes 8, Chandra and Chakrabarty made use 
of Golomb codes 1, Iyengar et al. explored the use of run-length codes 10, Chandra 
and Chakrabarty tried Frequency-directed run-length codes 2, and Volkerink et al. 
have investigated the use of Packet-based codes 20.  

All approaches above (test scheduling and test data compression techniques) 
reduce the ATE memory requirement. In the case of test scheduling, the effective 
organization means that both the test time and the needed test data volume are 
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Section 4 and our test data selection and scheduling approach is described in 



reduced, and in the case of test data compression, less test data is required to be 
stored in the ATE. The main advantage with these two approaches is that the highest 
possible test quality is reached since the whole test data volume is applied. However, 
the main disadvantage is that these techniques do not guarantee that the test data 
volume fits the ATE. Hence, they might not be applicable in practice. It means that 
there is a need for a technique that in a systematic way defines the test data volume 
for a system in such a way that the test quality is maximized while the test data is 
guaranteed to fit the ATE memory.  

3. Problem Formulation 
We assume that given is a core-based architecture with n cores denoted by i, and 

for each core i in the system, the following is given:  

 • scij={sci1, sci2,..., scim} - the length of the scanned elements at core i are given 
where m is the number of scanned elements,  

 • wii - the number of input wrapper cells,  
 • woi - the number of output wrapper cells,  
 • wbi - the number of bidirectional wrapper cells,  
 • tvi - the number of test vectors,  
 • fci - the fault coverage reached when all the tvi test vectors are applied. 
 • ppi - the pass probability per core and, 
 • dpi - the defect probability per core (given as 1-ppi). 

For the system, a maximal TAM bandwidth Wtam, a maximal number of k TAMs, 
and a upper-bound memory constraint Mmax on the memory depth in the ATE are 
given.  

The TAM bandwidth Wtam is to be partitioned into a set of k TAMs denoted by j 
each of width Wtam={w1, w2, ...,wk} in such a way that:  

                                                                                     
and on each TAM, one core can be tested at a time. 

Since the memory depth in the ATE (in bits) is equal to the test application time 
for the system (in clock cycles) 11, the memory constraint is actually a time 
constraint τmax: 

                                                        
Our problem is to:  

• for each core i select the number of test vectors (stvi),  
• partition the given TAM width Wtam into no more than k TAMs,  
• determine the width of each TAM (wj), j=1..k,  
• assign each core to one TAM, and  
• assign a start time for the testing of each core.  
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The selection of test data (stvi for each core i) and the test scheduling should be 
� 4) is 

maximized while the memory constraint (Mmax) (time constraint τmax) is met.   
 

4. Test Quality Metric 
For the truncation scheme we need a test quality metric to (1) select test data for 

each core and (2) to measure the final system test quality. In this section we describe 
the metric where we for a core i take the following parameters into account to 
measure test quality:  

• defect probability (dpi), 
• fault coverage (fci), and 
• number of applied test vectors (stvi). 

The defect probability, the probability that a core has a defect, can be collected 
from the production line or set by experience. Defect probability has for a test quality 
metric to be taken into account since it is better to select test data for a core with a 
high defect probability than to select test data for a core with a low defect probability 
as the core with high defect probability it is more likely to hold a defect.  

The possibility to detect faults depends on the fault coverage versus the number of 
applied test vectors; hence the fault coverage and the number of applied test vectors 
also have to be taken into account. Fault simulation can be used to extract which 
fault each test vector detects. However, in a complex core-based design with a high 
number of cores, fault simulation for each core is, if possible due to IP-protection, 
highly time consuming. A core provider may want to protect the core, which makes 
fault simulation impossible. We therefore make use of an estimation technique. It is 
known that the fault coverage does not increase linearly over the number of applied 
test vectors. For instance, Figure 1.  shows the fault coverage for a set of ISCAS 
benchmarks. The following observation can be made: the curves have an 
exponential/logarithmic behavior as in Figure 2.  We, therefore, assume that the fault 
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and the +1 is used to adjust the curve to passes the origin.  
For a system we assume that the test quality can be estimated to: 
      ( _ _ _ | _ _ _ _ _ _ )P we find a defect we have a defect in the SOC  

The test quality defines the probability of finding a defect when we have the 
condition that the SOC has one defect. By introducing this probability, we find a way 
to measure the probability of finding a defect if a defect exist in the SOC and hence 
the test quality. However, it is important to note that our metric only describes the 
test quality and hence we are not introducing any assumptions about the number of 
defects in the SOC.  
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done in such a way that the test quality of the system (defined in Section 

  (3) 

  (4) 

               (5) 

coverage after applying stv  test vectors for core i can be estimated to (Figure 2(b)): 



probability, fault coverage and the number of test vectors, we make use of definitions 
from basic probability theory 3: 

Definition 1. If A and B are independent events => ( ) ( ) ( )P A B P A P B! =   

Definition 2. If A B!   is the empty set ( ) ( ) ( )P A B P A P B!" # = +    

Definition 3. , where P(B|A) is the probability of B 

conditioned on A. 

Furthermore, we assume (Section 3) that the quality of a test set (a set of test 
vectors) for a core i is composed by the following:  

• fault coverage fci and  
• defect probability dpi. 

Since the number of applied test vectors indirectly has an impact on the fault 
coverage, we define for each core i: 

• stvi - selected number of test vectors, and  
• fci(stvi) - fault coverage after stvi test vectors have been applied.  

We do the following assumption: 

• dpi and fci are independent events. 

Since we assume one defect in the system when we introduced test quality 
(Equation (0.5)), we can only have one defect in a core at a time in the system. 
Therefore we can say: 

• The intersection of any of the events dpi is the empty set .  

For a system with n cores, we can now derive STQ (system test quality) from 
Equation (0.5) by using Definition 1, Definition 2 and Definition 3: 
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And for a single core, the CTQ (core test quality) is: 

  

Figure 1.  Fault coverage versus the number of test vectors for a set of ISCAS 
designs.  
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 (6) 

      (7) 



Figure 2.  Fault coverage versus the number of test vectors estimated as an 
exponential/logarithmic function.  

 

5. Test Scheduling and Test Vector Selection 
In this section we describe our technique to optimize test quality by selecting test 

vectors for each core and schedule the selected vectors for an SOC under the time 
constraint given by the ATE memory depth (see Equation (0.2) and 11). We assume 
that given is a system as described in Section 3 and we assume an architecture where 
the TAM wires can be grouped into several TAMs and the cores connected to the 
same TAM are tested sequentially one after the other 19. We make use of the test 
quality metric defined in Section � 4.  

The scanned elements (scan-chains, input cells, output cells and bidirectional 
cells) at a core has to be configured into a set of wrapper chains, which are to be 
connected to a corresponding number of TAM wires. The wrapper scan chains, 
which are to be connected to the TAM wires wj, should be as balanced as possible 
and we make use of the Design_wrapper algorithm proposed by Iyengar et al. 9. For 
a wrapper chain configuration at a core i where sii is the longest wrapper scan-in 
chain and soi is the longest wrapper scan-out chain, the test time for core i is given 
by 9:  

          
where tv is the number of applied test vectors for core i and w is the TAM width. 

We need a technique to partition the given TAM width Wtam into a number of 
TAMs k and to determine which TAM a core should be assigned to. The number of 
different ways we can assign n cores to k TAMs grows with kn, and therefore the 
number of possible alternatives will be huge. We need a technique to guide the 
assignment of cores to the TAMs. We make use of the fact that Iyengar et al. 9  
made use of, which is that balancing the wrapper scan-in chain and wrapper scan-out 
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chain introduces different number of ATE idle bits as the TAM bandwidth varies. 
We define TWUi (TAM width utilization) for a core i at a TAM of width w as: 

  

and we make use of a single wrapper-chain (one TAM wire) as a reference point to 
introduce WDC (wrapper design cost) that measure the imbalance (introduced 
number of idle bits) for a TAM width w relative to TAM width 1: 

                                        

For illustration of the variations in the number of ATE idle bits, we plot in Figure 3.  
the value of WDC for different TAM widths (number of wrapper chains), obtained 
by using core 1 of the ITC’02 benchmark p93791. We also plot the maximum value 
of the scan-in and scan-out lengths at various TAM widths for the previous design in 

TAM widths with the same test time, a Pareto-optimal point is the one with lowest 
TAM 9. We notice, we can notice that the TAM widths having a low value of the 
WDC, and hence a small number of idle bits, corresponds to the Pareto-optimal 
points. Hence, we make use of WDC to guide the selection of wrapper chains at a 
core.  

Figure 3.  WDC over the TAM width. for core 1 in P93791.   
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                        (10) 

Figure 4.  In Figure 4   several TAM widths have the same test time. For a set of 
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Figure 4.  Max (scan-in, scan-out) over the TAM width for core 1 in P93791. 
 

 

Figure 5.  Test vector selection and test scheduling algorithm.  

1. Given: 
τ 

max  - the upper bound on test time limit for the system 
W tam  - number of T AM wires - distributed over k  T AMs w 1 , 
w 2 , ..., w k  in such a way that Eq. 

2. V ariables: 
stv i  = 0 //selected number of test vectors for core i 
T A T  = 0 // test application time of the system 

3. Compute WDC i  for all cores at all k  T AMs  
4. Select best T AM for each core based on WDC i 
5. while T A T < τ max at any T AM begin 
6. for i =1 to n begin  // For all cores 
7. Compute τ ( w j ,1) (Eq. 8) 
8. Compute STQ i assuming stv i = stv i +1  
9. end 
10. for cor e  with highest STQ / τ ( w j ,1) and stv i < tv i 
1 1. stv i = stv i +1 
12. for all  cores where stv i >0 begin // selected vectors 
13. Assign core to an available T AM with minimal  WDC i 
14. if  a T AM is full (< τ max ) - mark T AM as unavailable. 
15. end 
16. Compute and return STQ   
17. end 
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The algorithm for our test truncation scheme is outlined in Figure 5.  Given is a 
system, the upper bound on the test time (τmax) and the TAM width (Wtam). Initially 
no test vectors are selected for any core (stvi=0 for all i) and the test time for the test 
schedule is zero (TAT=0). The test vector that contributes most to improving STQ is 
selected, assigned to a TAM where WDC is minimal and scheduled on the selected 
TAM in order to make sure that the τmax is not violated. Additional vectors are 
selected one by one in such a way that STQ is maximized, and after each selection 
the schedule is created to verify that the time constraint (ATE memory depth 
constraint) is not violated. Note that the test vectors for a core might not be selected 
in order. For instance, in a system with two cores A and B, the first vector can be 
selected from core A, the second from core B, and the third from core A. However, 
at the scheduling, the test vectors for each core are grouped and scheduled as a single 
set. The algorithm (Figure 5. ) assumes a fixed TAM partition (number of TAMs and 
their width). We have therefore added an outer loop that makes sure that we explore 
all possible TAM configurations. 

5.1. Illustrative Example 

To illustrate the proposed technique for test scheduling and test vector selection, 
we make use of an example where the time constraint is set to 5% of the maximal 
test application time (the time when all available test vectors are applied). For the 
example, we make use of the ITC’02 benchmark 17 d695 with the data presented in 
TABLE I. As the maximal fault coverage for a core when all test vectors are applied 
and the pass probability per core are not given in the ITC’02 benchmarks, we have 
added these numbers. In order to show the importance of combining test scheduling 
and test vector selection, we compare our proposed technique to a naive approach 
where we order the tests and assign test vectors according to the initial sorted order 
until the time limit (ATE memory depth) is reached. For this naive approach we 
consider three different techniques. 

 
 

Core 
 

0 1 2 3 4 5 6 7 8 9 10 

Scan-chains 0 0 0 1 4 32 16 16 4 32 32 

Inputs wi 0 32 207 34 36 38 62 77 35 35 28 

Outputs wo 0 32 108 1 39 304 152 150 49 320 106 

Test vectors tvi 0 12 73 75 105 110 234 95 97 12 68 

Pass probability ppi 97 98 99 95 92 99 94 90 92 98 94 

Max fault coverage fci (%) 95 93 99 98 96 96 99 94 99 95 96 

TABLE I  DATA FOR BENCHMARK D695.  
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1. Sorting when not considering defect probability and fault coverage 
(Technique 1). 

2. Sorting when considering defect probability but not fault coverage. 
The cores are sorted in descending order according to defect 
probability (Technique 2). 

3. Sorting when considering defect probability in combination with 
fault coverage. In this technique, we make use of the STQ 
(Equation(0.6)) equation to find a value of the test quality for each 
core. The cores are then sorted in descending order according to test 
quality per clock cycle. The sorting constant is described in Equation 
(0.11) (Technique 3). 

                                                                
For our test vector selection and test scheduling technique, we consider three cases 
where we divide the TAM into one (Technique 4), two (Technique 5) or three test 
buses (Technique 6). The selected test data volume per core for each of the six 
scheduling techniques is reported in Table TABLE II and the test schedules with the 
corresponding STQ are presented in Figure 6.  Figure 6. (a) illustrates the case when 
no information about defect probability and fault coverage is used in the test 
ordering. As seen in the figure, such technique produces a schedule with an 
extremely low system test quality (STQ). By making use of the information on defect 
probability (Figure 6. (b)), respective defect probability and fault coverage (Figure 6. 
(c)) in the ordering, we can improve the test quality significantly. Although it is 
possible to increase the STQ by using an efficient sorting technique, we are still not 
exploiting the fact that the first test vectors in a test set detect more faults than the 
last test vectors. In (Figure 6. (d) - (f)), we make use this information as we are using 
our proposed technique for test scheduling and test vector selection. We note that it 
is possible to further improve the STQ by dividing the TAM into several test buses 
(Figure 6. (e) - (f)). 

TABLE II SELECTED TEST VECTORS (%) FOR THE CORES IN D695 
CONSIDERING DIFFERENT SCHEDULING TECHNIQUES.  
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      (11) 

Selected test data for each core (%) 
Technique 

0 1 2 3 4 5 6 7 8 9 10 

Technique 1 0 0 100 0 0 20 0 0 0 0 0 

Technique 2 0 0 0 0 0 0 0 54.7 0 0 0 

Technique 3 100 0 0 0 0 0 0 52.6 0 0 0 

Technique 4 0 100 9.6 6.7 4.8 0 1.7 10.5 6.2 8.3 4.4 

Technique 5 0 100 9.6 16.0 10.5 0 3.8 21.1 13.4 8.3 4.4 

Technique 6 0 100 9.6 17.3 11.4 0 2.6 13.7 17.5 33.3 14.7 
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Figure 6.  Test quality (STQ) results for different test scheduling techniques.  

5.2. Optimal Solution For Single TAM 

The algorithm above can easily be improved to produce an optimal solution in the 
case of a single TAM. The algorithm above aborts the assignment of test vectors 
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immediately when the time constraint (memory constraint) is reached - a selected 
test vector cannot be assigned since it violates the constraint. However, test vectors 
from other cores (not from the core that violates the time constraint) could have been 
selected while making sure that they do not violate the ATE constraint.  

Note, that the selection of test vectors is based on a monotonically decreasing 
function. The test vector that contributes most to the test quality is first selected. That 
process continuous on an updated list until the constraint is reached. In the case of a 
single TAM, the scheme is optimal.  

6. Experimental Results 
The aim with the experiments is to demonstrate that the test quality can be kept 

high by using the proposed ATE memory constrained test data truncation scheme. 
We have implemented the proposed technique described above, and we have in the 
experiments made use of five ITC’02 benchmarks 17, d281, d695, p22810, p34392, 
and p93791. It is given for each core in these benchmarks, the number of test 
vectors, the number of scanned elements (number and length of the scan-chains), the 
number of input pins, bidirectional pins and output pins. The netlists for the ITC’02 
benchmarks are not publicly available, and therefore we have, in order to perform 
experiments, added for each core a pass probability and a maximal fault coverage 
number when all its test vectors are applied (TABLE III).  

In order to have a memory (time) constraint from the ATE, we performed for each 
design a schedule where all vectors are applied and that test application time reefers 
to 100%. We have performed experiments at various ATE memory depths 
constraints (equal to time constraints (see Equation (0.2) and 11)) and these 
constraints are set as a percentage of the time it would take to apply all test vectors.  

We identify six techniques:  

1. Test scheduling when not considering defect probability nor fault 
coverage and testing is aborted at τmax - technique 1. 

2. Test scheduling when considering defect probability but not fault 
coverage and testing is aborted at τmax - technique 2. 

3. Test scheduling when considering defect probability as well as fault 
coverage and testing is aborted at τmax - technique 3.  

4. Test scheduling and test vector selection when considering defect 
probability and fault coverage, using one TAM - technique 4. 

5. Test scheduling and test vector selection when considering defect 
probability and fault coverage, using up to two TAMs - technique 5. 

6. Test scheduling and test vector selection when considering defect 
probability and fault coverage, using up to three TAMs - technique 
6. 
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Core 
 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 

pp  98 98 99 95 92 99 94 90 92                         
d281 

fc  93 98 97 95 98 98 96 99 97                         

pp  97 98 99 95 92 99 94 90 92 98 94                       
d695 

fc  95 93 99 98 96 96 99 94 99 95 96                       

pp  98 98 97 93 91 92 99 96 96 95 93 91 92 93 99 99 99 95 96 97 93 99 96 98 99 92 91 91 93     
p22810 

fc  95 99 97 98 94 99 99 97 95 97 97 99 99 94 97 94 99 98 94 95 99 99 95 98 95 99 99 97 98     

pp  98 98 97 91 95 94 94 93 99 99 91 91 90 95 94 96 96 97 92 90              
p34392 

fc  97 97 99 98 99 99 97 98 94 96 98 98 99 94 97 95 98 98 95 95              

pp  99 99 99 97 90 91 92 98 96 91 94 93 91 91 90 99 98 97 99 99 99 90 99 90 98 92 96 95 91 90 96 99 99 
p93791 

fc  99 99 95 98 98 99 97 99 95 96 97 99 99 94 98 94 97 97 95 95 99 98 96 98 94 99 99 98 99 97 98 99 94 

TABLE III THE PASS PROBABILITY AND MAXIMAL FAULT COVERAGE NUMBERS FOR THE CORES IN THE 

SOCS (%).  

  
Technique 1 Technique 2 Technique 3 Technique 4 Technique 5 Technique 6 

SOC 
% of max 
test time STQ STQ STQ STQ STQ STQ 

5 0.00542 0.118 0.560 0.719 0.720 0.720 

10 0.0248 0.235 0.618 0.793 0.796 0.796 

25 0.0507 0.458 0.747 0.884 0.885 0.885 

50 0.340 0.619 0.902 0.945 0.945 0.945 

75 0.588 0.927 0.958 0.969 0.969 0.969 

p93791 
 

TAM 
width 16 

100 0.976 0.976 0.976 0.976 0.976 0.976 

5 0.00542 0.118 0.559 0.715 0.748 0.748 

10 0.0249 0.235 0.618 0.791 0.822 0.822 

25 0.0507 0.459 0.742 0.883 0.908 0.908 

50 0.340 0.619 0.902 0.945 0.960 0.960 

75 0.584 0.927 0.957 0.969 0.974 0.974 

p93791 
 

TAM 
width 32 

 

100 0.976 0.976 0.976 0.976 0.976 0.976 

5 0.00535 0.118 0.499 0.703 0.752 0.752 

10 0.00606 0.235 0.567 0.780 0.827 0.827 

25 0.0356 0.461 0.739 0.878 0.918 0.918 

50 0.335 0.620 0.901 0.944 0.965 0.965 

75 0.566 0.927 0.961 0.969 0.975 0.975 

p93791 
 

TAM 
width 64 

 

100 0.976 0.976 0.976 0.976 0.976 0.976 

TABLE IV 
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experiments on benchmark p93791 at TAM width 16, 32 and 64 at time constraint 
5%, 10%, 25%, 50%, 75%, and 100% of the test application time if all test data is 
applied. The results are collected in Table TABLE IV and illustrated for technique 2, 

time constraint, rather similar at various TAM widths. Therefore, for the rest of the 
experiments we assume a TAM bandwidth Wtam of 32.  

The results from the experiments on d281, d695, p22810, p34392, and p93791 are 
collected in TABLE V, and also plotted in Figure 13.  In column 1 the design name 
is given, in column 2 the percentage of the test time is given, and in column 3 to 8 
the produced STQ is reported for each technique (1 to 6). The computational cost for 
every experiment is in the range of a few seconds to a few minutes.  

From the experimental results collected in TABLE V and Figure 13.  we learn that 
the STQ value increases with the time constraint (a larger ATE memory results in a 
higher STQ), which is obvious. It is also obvious that the STQ value for a design is 
the same at 100% test time, all test data is applied. From the results, we also see that 
test set selection improves the test quality when comparing STQ at the same test time 
limit. That is, technique 4, 5, 6 have significant higher STQ value compared to 
technique 1, 2 and 3. But also important, we note that we can achieve a high test 
quality at low testing times. Take design p93791, for example, where the STQ value 
(0.584) for technique 1 at 75% of the testing time is lower than the STQ value 
(0.748) at only 5% for technique 6. It means that it is possible, by integrating test set 
selection and test scheduling, to reduce the test application time while keeping the 
test quality high. Also, we have selected rather high pass probabilities and rather 
high fault coverage as these numbers are not publicly available for the ITC’02 
designs. For designs with lower pass probabilities and lower fault coverage, and also, 
for designs where the variations in these numbers are higher, our technique becomes 
more important.  

7. Conclusions 
The technology development has made it possible to design extremely advanced 

chips where a complete system is placed on a single die. The requirement to test 
these system chips increases, and especially, the growing test data volume is 
becoming a problem. Several test scheduling techniques have been proposed to 
organize the test data in the ATE in such a way that the ATE memory limitation is 
not violated, and several test compression schemes have been proposed to reduce the 
test data volume. However, these techniques do not guarantee that the test data 
volume fits the ATE.  

In this paper we have therefore proposed a test data truncation scheme that 
systematically selects test vectors and schedules the selected test vectors for each 
core in a core-based system in such a way that the test quality is maximized while 
the constraint on ATE memory depth is met.  
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In the first experiment, we analyze the importance of TAM width. We have made 

4, and 6 in Figure 7.  The results show that the produced results (STQ) are at a given 
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Technique 1 Technique 2 Technique 3 Technique 4 Technique 5 Technique 6 

SOC 

% of 
max 
test 
time 

STQ STQ STQ STQ STQ STQ 

5 0.0209 0.164 0.496 0.674 0.726 0.726 

10 0.0230 0.186 0.563 0.774 0.818 0.818 

25 0.198 0.215 0.834 0.879 0.905 0.912 

50 0.912 0.237 0.903 0.935 0.949 0.949 

75 0.956 0.870 0.923 0.960 0.968 0.968 

d281 

100 0.974 0.974 0.974 0.974 0.974 0.974 

5 0.0332 0.167 0.203 0.440 0.538 0.556 

10 0.0370 0.257 0.254 0.567 0.670 0.690 

25 0.208 0.405 0.510 0.743 0.849 0.863 

50 0.335 0.617 0.803 0.879 0.952 0.952 

75 0.602 0.821 0.937 0.946 0.965 0.965 

d695 

100 0.966 0.966 0.966 0.966 0.966 0.966 

5 0.0333 0.174 0.450 0.659 0.691 0.759 

10 0.0347 0.186 0.608 0.764 0.796 0.856 

25 0.0544 0.398 0.769 0.885 0.900 0.940 

50 0.181 0.830 0.912 0.949 0.949 0.968 

75 0.600 0.916 0.964 0.969 0.969 0.973 

p22810 

100 0.973 0.973 0.973 0.973 0.973 0.973 

5 0.0307 0.312 0.683 0.798 0.843 0.859 

10 0.0341 0.331 0.766 0.857 0.893 0.898 

25 0.0602 0.470 0.846 0.919 0.940 0.942 

50 0.533 0.492 0.921 0.950 0.963 0.967 

75 0.547 0.906 0.943 0.965 0.972 0.972 

p34392 

100 0.972 0.972 0.972 0.972 0.972 0.972 

5 0.00542 0.118 0.559 0.715 0.748 0.748 

10 0.0249 0.235 0.618 0.791 0.822 0.822 

25 0.0507 0.459 0.742 0.883 0.908 0.908 

50 0.340 0.619 0.902 0.945 0.960 0.960 

75 0.584 0.927 0.957 0.969 0.974 0.974 

p93791 

100 0.976 0.976 0.976 0.976 0.976 0.976 

TABLE V EXPERIMENTAL RESULTS. TECHNIQUE 1 - ONLY TEST SCHEDULING, TECHNIQUE 2 - TEST 

SCHEDULING AND CONSIDERING DEFECT PROBABILITY (DP), TECHNIQUE 3 - TEST SCHEDULING 

CONSIDERING DP AND FAULT COVERAGE (FC), TECHNIQUE 4 - TEST VECTOR SELECTION AND TEST 

SCHEDULING CONSIDERING DP AND FC AT ONE TAM, TECHNIQUE 5 - AS IN TECHNIQUE 4 BUT TWO 

TAMS, TECHNIQUE 6 - AS IN TECHNIQUE 4 BUT THREE TAMS.  
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We have defined a test quality metric based on defect probability, fault coverage 

and the number of applied vectors that is used in the proposed test data selection 
scheme. We have implemented our technique and the experiments on several ITC’02 
benchmarks at reasonable CPU times show that high test quality can be achieved by 
careful selection of test data. Further, our technique can be used to shorten the test 
application time for a given test quality value. 

 

 

1. Chandra and K. Chakrabarty, “System-on-a-Chip Test Data Compression and 
Decompression Architectures Based on Golomb Codes”, Transactions on CAD of IC and 
Systems, pp. 355-367, Vol. 20, No. 3, 2001. 

 2. Chandra and K. Chakrabarty, “Frequency -Directed-Run-Length (FDR) Codes with 
Application to System-on-a-Chip Test Data Compression”, Proceedings of VLSI Test 
Symposium (VTS), pp. 42-47, 2001.  

3. G. Blom, “Sannolikhetsteori och statistikteori med till mpningar”, Studentlitteratur, 
1989.   

4. S. Edbom and E. Larsson, “An Integrated Technique for Test Vector Selection and Test 
Scheduling under Test Time Constraint”, Proceedings of Asian Test Symposium (ATS), 
pp. 254-257, 2004.   

5. S. K. Goel, K. Chiu, E. J. Marinissen, T. Nguyen, and S. Oostdijk, “Test Infrastructure 
Design for the NexperiaTMHome Platform PNX8550 System Chip”, Proceedings of 
Design, Automation and Test in Europe Conference (DATE), pp. 1530-1591, Paris, 
France, 2004.   

6. P. Harrod, “Testing reusable IP-a case study”, Proceedings of International Test 
Conference (ITC), pp. 493-498, Atlantic City, NJ, USA, 1999. 

 7. S. D. Huss and R. S. Gyurcsik, “Optimal Ordering of Analog Integrated Circuit Tests to 
Minimize Test Time”, Proceedings of Design Automation Conference (DAC), pp. 494-
499, 1991.  

 8. H. Ichihara, A. Ogawa, T. Inoue, and A. Tamura, “Dynamic Test Compression Using 
Statistical Coding”, Proceedings of Asian Test Symposium (ATS), pp. 143-148, Kyoto, 
Japan, November 2001.   

9. V. Iyengar, K. Chakrabarty, and E. J. Marinissen, “Test wrapper and test access 
mechanism co-optimization for system-on-chip”, Proceedings of International Test 
Conference (ITC), pp. 1023-1032, Baltimore, MD, USA, 2001.  

 

239Combined Test Data Selection and Scheduling for Test Quality Optimization

References

Š



                      Erik Larsson and Stina Edbom 

10. V. Iyengar, K. Chakrabarty, and B. Murray, “Built-In Self-Testing of Sequential Corcuits 
Using Precomputed Test Sets”, Proceedings of VLSI Test Symposium (VTS), pp. 418-423, 
1998.   

11. V. Iyengar, S. K. Goel, E. J. Marinissen, and K. Chakrabarty, “Test resource optimization 
for multi-site testing of SOCs under ATE memory depth constraints”, Proceedings of 

 
12. W. J. Jiang and B. Vinnakota, “Defect-Oriented Test Scheduling”, Transactions on Very-

 13. S. Koranne, “On Test Scheduling for Core-Based SOCs”, Proceedings of International 
Conference on VLSI Design (VLSID), pp. 505-510, Bangalore, India, January 2002.  

 14. E. Larsson, J. Pouget, and Z. Peng, “Defect-Aware SOC Test Scheduling“, Proceedings 
of VLSI Test Symposium (VTS), Napa Valley, CA, USA, pp. 359-364, April 2004.  

 15. T.L. McLaurin and J.C. Potter, “On-the-Shelf Core Pattern Methodology for ColdFire(R) 
Microprocessor Cores”, Proceedings of International Test Conference (ITC), pp. 1100-
1107, 2000.   

16. E. J. Marinissen, R. Arendsen, G. Bos, H. Dingemanse, M. Lousberg, and C. Wouters, 
“A structured and scalable mechanism for test access to embedded reusable cores”, 
Proceedings of International Test Conference (ITC), pp. 284-293, Washington, DC, 
USA, October 1998.  

17. E. J. Marinissen, V. Iyengar, and K. Chakrabarty, “A Set of Benchmarks for Modular 
Testing of SOCs”, Proceedings of International Test Conference (ITC), pp. 519-528, 
Baltimore, MD, USA, October 2002.  

18. L. Milor and A. L. Sangiovanni-Vincentelli, “Minimizing Production Test Time to Detect 
Faults in Analog Circuits”, IEEE Transactions on Computer-Aided Design of Integrated 

 
19. P. Varma and S. Bhatia, “A Structured Test Re-Use Methodology for Core-based System 

Chips”, Proceedings of International Test Conference (ITC), pp. 294-302, Washington, 
DC, USA, October 1998.  

20. E. H. Volkerink, A. Khoche, and S. Mitra, “Packet-based Input Test Data Compression 
Techniques”, Proceedings of International Test Conference (ITC), pp. 154-163, 
Baltimore, MD, USA, October 2002.   

21. H. Vranken, F. Hapke, S. Rogge, D. Chindamo, and E. Volkrink, “ATPG Padding And 
ATE Vector Repeat Per Port For Reducing Test Data Volume”, Proceedings of 
International Test Conference (ITC), pp. 1069-1078, Charlotte, NC, USA, 2003.   

22. E. Larsson and S. Edbom,  “Combined Test Data Selection and Scheduling for Test 
Quality Optimization under ATE Memory Depth Constraint”, pp. 429-434, IFIP VLSI-
SOC 2005, Perth, Australia, October 17-19, 2005.  

 
 
 
 
 
 

240

International Test Conference (ITC), pp. 1159-1168, Baltimore, USA, October 2002. 

Large Scale Integration (VLSI) Systems, Vol. 9, No. 3, pp. 427-438, June 2001.  

Circuits and Systems., Vol. 13, No. 6, pp 796-, June 1994. 



Figure 7.  STQ comparison at TAM width 16, 32, and 64 for technique 2 on 
design p93791.  

Figure 8.  STQ comparison at TAM width 16, 32, and 64 for technique 4 on 
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design p93791. 
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Figure 9.  STQ comparison at TAM width 16, 32, and 64 for technique 6 on design 

p93791. 

 
 
 
 

Figure 10.  STQ at various test time limits for design d281. 
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Figure 11.  STQ at various test time limits for design d695. 

Figure 12.  STQ at various test time limits for design p22810. 
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Figure 13.  STQ at various test time limits for design d281. 

Figure 14.  
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STQ at various test time limits for design p93791.
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Abstract. In this paper we study the use of pseudorandom test tech-
niques for linear and nonlinear devices, in particular Micro Electro Me-
chanical Systems (MEMS). These test techniques lead to practical Built-
In-Self-Test techniques (BIST). We will first present the pseudorandom
test technique for Linear Time Invariant (LTI) systems. Next, we will
illustrate and evaluate the application of these techniques for weakly
nonlinear, purely nonlinear and strongly nonlinear devices.

1 Introduction

Although MEMS have been around since the early 80s, most research has fo-
cused on fabrication technology, design and packaging. Therefore, unlike other
areas of test research, the MEMS test area is immature and not practical for
mass production. Current test and characterization practices include mainly vi-
bration and shock techniques where mechanical stimuli are generated using an
off-chip input physical module. These current techniques involve considerable
difficulties. For example, tests involving mechanical stimuli require precision
shaking, proper alignment of devices in fixtures, and minimization of fixture
resonance [1].Temperature control is needed as well for accurate testing and
calibration of commercial microsensors such as accelerometers [2]. The work in
[1] and [2] shows the sophistication that accompanies inertial MEMS testing
when actuated using an off-chip input physical module. This was one of the
main reasons to integrate on-chip the input physical module and then contem-
plate Built-In Self-Test for MEMS which is very practical for mass production
and in-the-field monitoring.

In microsystem testing, defects and faults, test metrics, and fault simulation
practices keep the same definition as for analog ICs [3]. However microsystems
sustain more failure mechanisms because of micromachining, and their fault
models are more sophisticated due to the multiple energy domains, the large
number of basic design elements, the new technological defects and operational
failures, and the enormous possible faults which turn structural testing very
much device dependent. Functional testing may be more practical than struc-
tural testing. This is the reason why only functional testing is today considered
during production. In some cases it is possible to apply a simple electrical test

Nonlinear MEMS
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signal (pulse or step) to stimulate the device under test. The transducer response
is next analyzed off-chip. This is not enough for performing on-chip a functional
analysis that fully tests the device and that can be exploited for other tasks
such as manufacturing testing [4]. Pseudorandom (PR) testing of mixed-signal
circuits has been introduced in [5]. An earlier work based on pulse-like excita-
tion and subsequent analysis of the transient response of a mixed signal circuit
is presented in [6]. In [7], an algorithm for test signature generation based on
sensitivity analysis is presented. However, none of these works includes a study
on the circuit implementation of the BIST technique and a comparison between
different Impulse Response (IR) measurement methods taking into considera-
tion noise and nonlinear distortions. In addition, none of these previous works
consider the extension to nonlinear systems.

Several authors have considered self-test techniques for MEMS, in particular
for accelerometers as in [8], [9] and [10]. Dedicated mechanical beams are used to
generate an electrostatic force that mimics an external acceleration. The same
idea was introduced in commercial accelerometers [11]. Alternative methods of
self-test stimuli generation have been considered (e.g. electrothermal stimuli in
[4], [9], and [12]. All these approaches apply electrical test pulses to stimulate
the device. The transducer response is next analyzed off-chip. The work in [8]
suggests computer-controlled verification and calibration when a Digital Signal
Processor (DSP) is available on chip. The differential BIST presented in [13]
addresses some limitations of previous self-test approaches but is only applicable
for structural testing of differential sensors. A similar approach is presented in
[14]. In both cases, functional testing is not considered.

It is well known that the impulse response of a LTI system provides enough
information about the system functional evaluation. In [15] and [16] we have
proposed a complete IR-based BIST technique for linear MEMS. The Maxi-
mal Length Sequence (MLS or m-sequence) method was used for finding the
IR of linear MEMS, without any consideration of nonlinear and noise distor-
tions that can exist in the measurement circuitry. In this chapter, different IR
measurement techniques are applied to a commercial MEMS accelerometer in
the presence of weak nonlinearities. They are then compared according to their
immunity to nonlinear and noise distortions. The pseudorandom test methods
prove high suitability for BIST implementation, and good immunity to noise
and nonlinear distortion. Especially the Inverse-Repeat Sequence (IRS) pseudo-
random technique which is used here for the first time in analog circuit testing.

Next, the pseudorandom method is applied for the case of pure nonlinear
systems. Here, a microbeam MEMS with electrothermal excitation and piezore-
sistive detection is used as a case study. Finally, the pseudorandom method will
be generalized for testing any nonlinear system. While considering nonlinear
systems, the results of the pseudorandom method will be compared with the
Volterra kernel coefficients used to model nonlinear systems.
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2 Linear pseudorandom test method

In [15] we have described the MEMS pseudorandom test technique. The ar-
chitecture of the test approach is shown in Figure 1. The LFSR (Linear Feed-
back Shift Register) generates a periodic two-level deterministic MLS of length
L = 2m − 1, where m is an integer denoting the order of the sequence. A 1-bit
DAC is used to verify the values of the two-level signal at the output of the
digital circuit of the LFSR. The 1-bit DAC is necessary for generation of a low
noise analog two-level signal at the input of the DUT. Without the use of the
1-bit DAC we will need to eliminate the input signal noise by performing more
averages at the ouput.

MLS

Generator

AMS LTI

CUT ADC

Correlator

Signature Analyzer

x(k) y(k)

h(k)

Decision
Faulty or Fault-free Circuit

1-bit
DAC

Fig. 1. Block diagram of the test approach.

The output of an LTI system is y(k) = x(k) ∗ h(k), where x(k) is the input
signal and h(k) is the impulse response of the system. The input/output cross-
correlation φxy(k) can be written in terms of the convolution as:

φxy(k) = y(k) ∗ x(−k)
= h(k) ∗ (x(k) ∗ x(−k))
= h(k) ∗ φxx(k)

⇒ φxy(k) ∼= h(k) if φxx(k) ∼= δ(k) (1)

An important property of an MLS is that its autocorrelation function is, except
for a small DC error, an impulse that can be represented by the Dirac delta
function. We can see from Equation (1) that in the case of MLS-based mea-
surements, crosscorrelating the system input and output sequences gives the
IR. The cross-correlation operation in the case of a discrete sequence is defined
by:

φxy(k) =
1
L

L−1∑

j=0

x(j − k) y(j) (2)

Since the elements of x(k) are all ±1, only additions and subtractions are
required to perform the multiplication in the above correlation function, which
turns the design less complex and decrease the estimation period. To obtain
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the kth component h(k) of the impulse response, we can proceed, according to
Equation (2), as shown in Figure 2. Each sample of the output sequence y(j)
is multiplied by 1 or −1 by means of the multiplexer unit (MUX) controlled by
the input sequence x(j − k), and the result is added to the sum stored in the
accumulator. The value obtained at the end of the calculation loop is divided
by L using a shifter.

Fig. 2. Simplified Correlation Cell (SCC).

The first m components of the impulse response (h(k), k = 0 to m− 1) can
be obtained by the scheme shown in Figure 3.

Fig. 3. BIST architecture.

The on-chip implementation shown above does not give the overall impulse
response but only the first m components [15],[16]. Such information can be ex-
ploited as a system pattern (test signature) that can be used for fault detection.
If a larger number of components is demanded, more sophisticated algorithms
can be used which would result in increased silicon overhead. In [16], we map
specifications from the transfer function space to the impulse response space us-
ing Monte Carlo simulations. Then we perform a sensitivity analysis to choose
the impulse response samples with highest sensitivity to faults, thus, forming
the signature that permits the best fault coverage. These samples form the test
signature to be compared with the tolerance range obtained by the Monte Carlo
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not.

3 Case-study: MEMS accelerometer

The measurement system in Figure 4 has been designed to stimulate the com-
mercialized MEMS accelerometer ADXL103 [17]. The BIST circuit of Figure 3
is implemented in Labview where stimulus generation and response analysis
take place.

NI PCI - 6115

Labview
Test Signal Response

DUT

Data Acquisition

Fig. 4. Schematic representation of the measurement setup.

In Labview the PR test signal is generated and low pass filtered to eliminate
the high slew rate represented by the transitions between the different levels of
the PR sequence. Without the low pass filtering, the high frequency components
due to high slew rates provoke nonlinear distortions and causes artifacts (spikes)
in the measurements [18]. Digital low pass filtering was performed using a 5th
order Kaiser-Bessel window FIR filter which is usually employed to smooth
signals that contain discontinuities. In the frequency domain, this is translated
by side lobe attenuation. The filtered PR signal is then applied through the
data acquisition card NI PCI-6115 to the ADXL103.

The output signal is digitized in the 12-bit ADC at the input of the NI
PCI-6115 card and entered to Matlab where signal processing is done to elim-
inate noise by averaging and calculate the impulse response components by
crosscorrelating the input and output signal.

The die photo of ADXL103 sensor region is shown in Figure 5.
The block diagram of the ADXL103 measurement system is shown in Fig-

ure 6. The activation of the digital input self-test pin (ST) by a voltage pulse
induces an electrostatic force which displaces the seismic mass. The dynamic
response at the output Xout is analyzed off-chip to verify the functionality of
the ADXL103.

As given by the designer [17], the transfer function of the ADXL103, for a
supply voltage VDD = 5 V, is:

F (s) =
Xout

Acceleration
=

0.011
8.374× 10−10s2 + 5.788× 10−6s + 1

mV/g (3)
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Fig. 5. Die photo of ADXL103 sensor region (4x3 self-test cells and 42 sense cells).
(Source: Analog Devices; reprinted with permission.)

Fig. 6. Basic block diagram of the ADXL103 measurement system. (Source: Analog
Devices; reprinted with permission.)

where g is the unit of acceleration at the input of the accelerometer
(1g ' 9.8m/s), and Xout is the output voltage. According to Equation (3),
the theoretical impulse and frequency responses of the ADXL103 are as shown
in Figure 7.

For the length of the LFSR and the value of the sampling frequency, we
must consider two main conditions. Firstly, if an m-sequence is mapped to an
analog time-varying waveform, by mapping each binary ‘0’ to ‘-1’ and each bi-
nary ‘1’ to ‘+1’, then the autocorrelation function will be as shown in Figure 8.
Unity for zero delay and −1/(2m − 1) for any delay greater that one sample.
We can notice that for a long MLS at small Tc (sampling period) the autocor-
relation is almost an impulse function of period = LTc. This property is used in
Equation (1) to prove that the IR of a DUT equals the input/output crosscor-
relation when the test signal is an MLS. According to this MLS property, the
value of the multiplication of the length of the sequence by the sampling period
must be greater than the time needed by the impulse response to decay to zero.
Otherwise we will have impulse response aliasing. For our case, the length of
the sequence is 212 − 1 = 4095, the sampling period is 10−5 sec, and the decay
time is approximately 1.5 ms (this can be observed on Figure 7(a)). So, the
first condition is satisfied since 4095× 10−5 = 40.95 ms is greater that 1.5 ms.
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Fig. 7. (a) Impulse response, (b) frequency response of the ADXL103 model.

Fig. 8. Autocorrelation of a maximal length sequence represented by 1 and -1.

Secondly, the power spectrum of the MLS is a discrete spectrum whose up-
per 3 dB roll-off frequency is about 0.45 fc. By adjusting the clock frequency,
a broadband signal over a wide frequency range can be generated. According
to this MLS property, the value of the sampling frequency must be chosen
such that 0.45 fc is greater than the bandwidth of the DUT. Otherwise the
spectrum of the MLS will not be flat in the bandwidth of the DUT, which
means that the MLS cannot be considered as a pseudorandom noise with re-
spect to the DUT. In other words, the sampling frequency is not large enough
(i.e. the sampling period Tc is not small enough) to approximate the MLS au-
tocorrelation function (Figure 8) to an impulse train. In our case, the sampling
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frequency is 100 kHz and the bandwidth of the accelerometer is less than 10 kHz
(this can be observed in Figure 7(b)). So the second condition is satisfied since
0.45×100 kHz > 10 kHz. It is better to choose a very high sampling frequency
to avoid spectrum aliasing. However, for a certain LFSR length, the sampling
frequency has an upper limit restricted by the first condition. Figure 9 shows ex-
perimental results of the application of the PR technique. Here, the impulse and
frequency responses are unitless because both the input stimulus (at the Self-
Test pin) and the output response are electric and of the same units (V). Using
the measurement setup of Figure 4, a 12-bit LFSR and a sampling frequency of
100 kHz (much larger than the bandwidth of the ADXL103) are programmed
by Labview to generate an MLS stimulus at ±5V (the dynamic range of the ac-
celerometer when stimulated through its Self-Test input). The analog output of
the ADXL103 is then digitized by the 12-bit ADC of the data acquisition card.
Notice that this ADC plays the role of the ADC of the PR BIST in Figure 1.
Finally the IR is calculated as the input/output crosscorrelation.

Fig. 9. Impulse and frequency responses of the ADXL103 circuit using the pseudo
random impulse measurement method.

Figure 9 shows the IR and TF after 10 averages of the output signal. Av-
eraging is used to eliminate noise. To realize 10 averages, a stimulation time of
11(4095 × 10−5) = 0.45 sec is needed. The multiplication of the MLS period
by 11 rather than 10 is because we always use the first MLS to stabilize the
accelerometer, and thus the measurement starts from the second sequence.

In fact, the impulse and frequency responses of the accelerometer when
stimulated mechanically are highly correlated with the impulse and frequency
responses when it is stimulated electrically through its self-test input. This is
because the two responses represent the reaction of the same structure to a
moving force, whether this force is mechanical or electrostatic. Due to this high
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correlation, the impulse and frequency responses that we have measured by
stimulating the accelerometer electrically are relevant to characterization.

The gain difference between the impulse responses of Figure 7 and Figure 9
is due to the fact that the ADXL103 has lower sensitivity when stimulated artifi-
cially (at its Self-Test input pin). This difference can be calibrated. However we
can notice by comparing Figure 7 and Figure 9 that using the PR BIST we can
evaluate a precise impulse response. This precision is demonstrated through the
transfer function (Figure 9) which shows the same resonant frequency, quality
factor, bandwidth, and roll-off factor.

Notice that the IR of Figure 9 is in fact composed of 4095 samples since it
is the output of the crosscorrelation operation between the 4095-sample MLS
and its corresponding digitized output (in Figure 9, the IR is just zoomed in to
275 samples). To calculate the 4095-sample impulse response according to the
PR BIST implementation of Figure 3, we would need to have 4095 SCCs and
flip-flops. Moreover, in a BIST environment, it is too complex to implement a
comparator that verifies the values of 4095 samples, each with 12 bits precision
(the precision of the ADC of the data acquisition card). All this may increase
the test overhead to an unacceptable value.

But in fact, only several highly fault sensitive samples (test signature) are
necessary to be calculated by the BIST. A similar study to that we have pre-
sented in [16] can be applied using Monte Carlo simulations to form the test
signature after a sensitivity analysis. In this way we can first derive the test
signature tolerance ranges out of the specification tolerance ranges. Then, we
can inject parametric variations to calculate the test metrics [3]. Finally, we
can optimize the length of the MLS stimulus and the bit-precision of the BIST
digital circuit.

4 Weakly nonlinear systems

In real life, there exist always some sources of nonlinear distortion. Here, the
term “weakly nonlinear system” is used. The sources of nonlinear distortion
can be due to MEMS nonidealities, due the presence of an ADC that normally
has harmonic and intermodulation nonlinear distortions, and due to distortion
in the analog part of the measurement circuit. Different IR measurement tech-
niques are more or less affected by distortion according to the test signal and
signal processing algorithms they use. In Section 4.1 we list different IR mea-
surement techniques that are compared in Section 4.4 according to their signal
to noise ratio SNR and distortion immunity Id described in Section 4.2. In
Section 4.3 we describe the IRS pseudorandom test technique.

4.1 Measurement techniques

Theoretically, the IR of a DUT is simply the output that corresponds to a
stimulus equal to a Dirac delta function δ(t). However, this is not practical
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since δ(t) is a mathematical function that can not be generated physically.
Even if it is approximately generated, its high amplitude drives the circuit to
work outside its dynamic range and its short duration leads to a low signal to
noise ratio. Several techniques have been proposed to measure the IR response
using signal processing. These can be classified into four classes:

– White Noise technique where the stimulus is a white noise and the IR is
calculated by finding the DUT input/output crosscorrelation.

– Time-delay Spectrometry (TDS) [19] like the linear sine sweep and the log-
arithmic sine sweep [20] methods. In the linear sine sweep the IR is usually
calculated by the inverse Fourier transform of the output signal. In the loga-
rithmic sine sweep it is usually calculated by the deconvolution of the output
with respect to the input using an inverse filter.

– Pulse Excitation (PE) technique which uses a single short duration pulse
excitation signal, the IR is directly the corresponding output of the DUT.

– Pseudo Random (PR) technique. The test excitation signal is a pseudo ran-
dom white noise like the MLS and the IRS. The IR is then found using the
input/output crosscorrelation.

Among the above four techniques the PE and the PR are the most suitable
for BIST implementation. In PE, the pulse signal generator can be implemented
easily and no calculation is needed to find the IR. The problem of this method
is its low SNR resulting from the low energy of the exciting signal. Averaging
the output signal can be a solution for improving the SNR. In PR, the test
signal (MLS or IRS) generator can be implemented easily using an LFSR, and
the input/output correlation can be simply implemented using SCC. However,
this is not the case of the white noise technique where the input/output cross-
correlation needs hardware to carry out all the multiplication operations. This
is why it is less suitable for a BIST implementation. TDS techniques are less
suitable for BIST implementation because of the complexity of the sine sweep
generator and of the inverse Fourier transform calculator [19] or the inverse
filter needed to perform the deconvolution of the output signal with respect to
the input [20].

4.2 Distortion immunity

Any weakly nonlinear system can be modeled by the nonlinear model used by
[21] and shown in Figure 10.

The distortion error component e(k) can be calculated by subtracting the
ideal IR h(k) from the distorted one hd(k). A memoryless rth − order nonlin-
earity d{.} can be written as:

d{xf (k)} = Ad[xf (k)]r (4)

where Ad sets the amplitude of the nonlinearity.
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Fig. 10. Nonlinear system modeling.

In general the error due to nonlinearity contains a linear component el(k)
identical in shape to the linear impulse response of the system, and a non-
linear component enl(k). It is the nonlinear component enl(k) which causes
the distortion. The linear component el(k) represents only a gain error g in
the measurement. enl(k) can be extracted from e(k) according to the following
equation:

enl = e(k)− g · h(k) (5)

enl is minimized by setting the gain error g to

g =
∑L−1

k=0 e(k) h(k)∑L−1
k=0 h2(k)

(6)

where L is the number of samples of IR,
∑L−1

k=0 e(k) h(k) represents the energy
correlated between e(k) and h(k), and

∑L−1
k=0 h2(k) is the total energy of h(k).

The distortion immunity Id of the impulse response measurement is then cal-
culated as the ratio of the linear impulse response energy to nonlinear error
energy [21] as follows:

Id = 10 log10

[ ∑L−1
k=0 h2(k)∑L−1
k=0 e2

nl(k)

]
(7)

Distortion immunity is an important performance parameter for evaluating
an IR measurement technique. But measurement environments suffer both non-
linear distortion and noise. So immunity to noise must be considered as well. In
Section 4.4, the distortion and noise immunities are evaluated for each method.
Finally, the best method is the one having the best immunity to distortion and
noise.

4.3 Inverse-Repeat Sequence technique

Consider a periodic binary signal x(k) suitable for impulse response measure-
ment, where the second half of the sequence is the exact inverse of the first half,
that is:

x(k + L) = −x(k) (8)
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The period of 2L of such a sequence will always contain an even number of
samples. It is proved in [21] that all even-order autocorrelations (r even) are
exactly zero. Such a sequence therefore possesses complete immunity to even-
order nonlinearity after cross correlation. Due to the anti-symmetry in x(k)
the first order autocorrelation will also possess anti-symmetry about L, that
is, φ1(k) = −φ1(k + L). A signal that satisfies these conditions is the so-called
Inverse-Repeat Sequence (IRS), obtained from two periods of MLS s(k) such
that the next period is inverted.

x(k) = s(k) n even, 0 ≤ k < 2L

= −s(k) n odd, 0 ≤ k < 2L (9)

where L is the period of the generating MLS (Note that the IRS period is 2L
which doubles the test time). The first-order autocorrelation of an IRS (φIRS)
is related to the corresponding signal for the generating MLS by the following
expression.

φIRS(k) =
1

2(L + 1)

2L−1∑
n=0

x(k) x(k + n)

= φMLS(k), k even
= −φMLS(k), k odd

= δ(k)− (−1)k

L + 1
− δ(k − L), 0 ≤ k < 2L (10)

clearly showing anti-symmetry about L.
By exciting a linear system with an IRS we obtain the impulse response of

the system in the same way that we would if using an MLS excitation. The IRS
is generated using an LFSR, and since it is a 2-level sequence the input/output
crosscorrelation can be done using the SCC blocks. So the same BIST as the
MLS can be used for the IRS technique.

4.4 Comparison between PE and PR techniques

For each of PE, MLS and IRS techniques we have used the model of Figure 10
to calculate the error signal e(k). Once e(k) is found, the distortion immunity
Id can be calculated using Equations (5), (6) and (7). Table 1 shows distor-
tion immunities of each of the three techniques for distortion orders from 2 to
5. The amplitude of the excitation signal is 20 dBmV and that of distortion
is Ad = −20 dBmV . The commercial MEMS accelerometer ADXL105 from
Analog Devices is taken as a DUT.
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The last two columns of Table 1 show that IRS has total immunity advantage
over both MLS and PE, and MLS has total immunity advantage over PE. Notice
that for even-order nonlinearities IRS has a very high immunity advantage over
MLS (235.6 dB at the second-order nonlinearity and 79.3 dB at the fourth-
order nonlinearity). However only approximately 3 dB of immunity advantage
can be offered by the IRS for the case of odd-order nonlinearity. So, the IRS
appears more interesting when testing a DUT with even-order nonlinearities.
However, in the presence of just odd-order nonlinearity, choosing the MLS is
better because it is simpler, and the 3 dB of immunity advantage offered by the
IRS can be compensated by a single averaging of the output sequence in the
case of an MLS input. The presence of only odd-order nonlinearities is typical of
systems that have odd symmetry, such as “differential” or “balanced” systems.

Noise
Distortion Distortion immunity and

order (dB) distortion immunity
r advantage of

Id(PE) Id(MLS) Id(IRS) MLSoverPE IRSoverMLS

2 41.4 16.1 248.7 7.7 235.6

3 63.9 22.1 23.3 12.1 3.6

4 86.4 22.6 251.7 11.84 79.3

5 109.7 25.1 28.1 11.9 3.7

Table 1. Comparison between the PE, MLS and IRS test techniques.

5 Purely nonlinear systems

In general, purely nonlinear systems can be modeled by the Hammerstein model
shown in Figure 11. The term “purely nonlinear” stands for the absence of any
linear behavior. This is caused by the nonlinear function at the input of the
dynamic linear block.

Fig. 11. Hammerstein model.

As case study of a purely nonlinear system, we consider a basic cantilever
MEMS with electrothermal stimulation and piezoresistive detection. Figure 12
shows the image of a chip containing three microbeams that have been fabri-
cated in a 0.8µm CMOS bulk micromachining technology. The surface of each
cantilever is covered with heating resistors made of polysilicon. The heating of
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the cantilever causes it to bend, and the actual deflection is measured by means
of piezoresistors placed at the anchor side of the cantilevers. For each cantilever,
a Wheatstone bridge is used for measurement.

Fig. 12. Image of a fabricated microstructure.

The average temperature Tm of the MEMS structure depends on the injected
thermal power Pth that is a function of the voltage Vi applied on the heating
resistance Rh according to:

Pth =
V 2

i

Rh
(11)

In this application the presence of an electrothermal coupling makes the circuit
purely nonlinear. This is because of the squaring function at the input of the
model, represented by Equation (11). The nonlinearity is thus static and of 2nd

order. According to Hammerstein model, the dynamic linear part is the linear
IR of the suspended microbeam, and the static nonlinear part corresponds to
the squaring function induced by electrothermal excitation. The pseudorandom
test introduced in Section 2 is not applicable for a purely 2nd order nonlinear
system. For example, if we stimulate the microbeam by an MLS with 1 and −1
levels, MLS(1,−1), the sequence will be squared by the electrothermal excitation
squaring function resulting in a DC signal at the input of the linear part. Of
course, a DC signal is not sufficient to stimulate a linear system with memory.

To avoid the effect of squaring, a modified binary MLS with 0 and 1 lev-
els, MLS(0,1), can be used. Its autocorrelation can be deduced from that of
MLS(1,−1) according to the following:

MLS(0,1)(k) = (MLS(1,−1)(k) + 1)/2 for k = [0, L− 1]

⇒ φ(0,1)(k) =
φ(1,−1)(k)

4
+

L− k

4L
≈ δ(k)

4
+

L− k

4L
(12)

For x = MLS(0,1) and k = [0, L − 1], if we substitute Equation (12) in
Equation (1) we obtain:
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=
h(k)

4
+

1
4

k∑

i=0

h(i)− 1
4L

k∑

i=0

h(i) (k − i) (13)

Equation (13) shows how h(k) can be extracted out of φxy(k) when an
MLS(0,1) is used. This also means that φxy(k) and h(k) are highly correlated
which permits to form the signature in the crosscorrelation space rather than the
impulse response space. This modification can be generalized. According to the
Hammerstein model in Figure 11, once x(k) is chosen such that x(k) = w(k),
the crosscorrelation of x(k) and y(k) can be derived as function of h(k) as
in Equation (13). In the case of the microbeam used in our case study, h(k)
is the IR of the linear part of its model. The linear part corresponds to the
microbeam without considering an electrothermal excitation. Figure 13 shows
the calculated impulse response h(k) of the microbeam using Equation (13).
Notice the resemblance between h(k) and the diagonal of the 2nd Volterra kernel
in Figure 14. Volterra kernels are functions used to model nonlinear systems [22]
and we will use them in the next Section.
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Fig. 13. IR of the microbeam.
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Fig. 14. 2nd Volterra kernels of the microbeam.
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Therefore, for MEMS that can be modeled by the Hammerstein model,
there is no need of sophisticated nonlinear modeling since the same results can
be obtained with a simple modification of the test signal in the proposed BIST.

6 Strongly nonlinear systems

Here we consider the nonlinear systems that cannot be modeled according to
the simple Hammerstein model as the case of purely nonlinear systems. In our
work we make use of the Volterra modeling technique to test strongly nonlinear
devices. It has been shown in [22] that any time-invariant nonlinear system with
fading memory can be approximated by a finite Volterra series to an arbitrary
precision according to the following equation:

y(k) = h0 +
N∑

r=1

M−1∑
m1=0

· · ·
M−1∑
mr=0

hr(m1, · · · , mr)
r∏

j=1

x(k −mj) (14)

where x and y are respectively the input and output of the system, N is the non-
linearity order, M is the memory of the system, and hr(m1, · · · , mr) represents
a coefficient of the rth−order Volterra kernel hr. The kernel hr carries informa-
tion about the rth − order nonlinear behavior of the system. Our interest is to
calculate the kernel coefficients of a nonlinear DUT, then compare them with
the typical values to test whether a fault exists or not. Existing methods for the
identification of Volterra kernels have proved computationally burdensome. In
[22] the authors have proposed an efficient method to determine the Volterra
kernels, where they make use of the Wiener general model in Figure 15.

According to this method, the system is stimulated by a multilevel MLS
(Figure 16) to extract the Wiener coefficients from the values of the sampled
output response. The advantage of this method is that the multilevel MLS
stimulus can be easily generated on-chip. The Volterra kernels are then obtained
from the Wiener model using a simple calculation.

To illustrate the physical meaning of Volterra kernels, let us consider the
block models shown in Figure 17. Figure 18 shows the 1st and 2nd kernels of
each of these models, calculated by the algorithm that we have implemented
based on the technique explained in [22].

The first two kernels of the linear system in Figure 17(a) are shown in
Figure 18(a) and Figure 18(b) respectively. Notice how the 1st kernel represents
the linear impulse response and the 2nd kernel is equal to zero since the system
is linear. The first two kernels of the nonlinear system of Figure 17(b) are
shown in Figure 18(a) and Figure 18(c) where the 2nd kernel is not equal to
zero anymore. The 1st kernel is always the same because the linear part of the
systems in Figure 17(a) and Figure 17(b) is the same. Similarly, the system of
Figure 17(c) has the same 1st kernel and the 2nd kernel is shown in Figure 18(d).
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Fig. 15. Wiener model with orthonormal basis.

Fig. 16. Multilevel MLS stimulus.

Fig. 17. (a) linear system, (b) and (c) 2nd order nonlinear systems.
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Fig. 18. Volterra kernels of the systems in Figure 17: (a) 1st kernel for all systems, (b),
(c) and (d) 2nd kernels for the systems in Figures 17(a), 17(b) and 17(c), respectively.
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After finding Volterra kernels we can extract design properties out of these
kernels and prove that they correspond really to the system. For example, the
1st kernel in Figure 18(a) is nothing but the impulse response of the FIR Filter I
which plays the role of the linear part in the systems of Figure 17. This proves
the correctness of the 1st kernel. The nonlinearity of the system in Figure 17(c)
is represented by squaring each input sample. Thus, there is no multiplication
between different input samples at different delays, which means that all the
2nd kernel coefficients at n1 6= n2 are zero. That is why Figure 18(d) has values
only through the diagonal n1 = n2. Moreover, the values through the diagonal
correspond to the impulse response of the FIR Filter II since it is in cascade
with the squaring function. For the purpose of testing, we will be interested
in finding a test signature composed of only several Volterra samples that are
highly sensitive to faults. A similar signature analysis to that of linear MEMS
[16] can be applied. Finally the signature is compared with the tolerance range
to decide whether the nonlinear MEMS functions correctly or not.

7 Validity of the binary PR BIST for testing nonlinear
MEMS

It can be proved that applying the pseudorandom test method to a nonlinear
system results in:

φxy(k) =
L−1∑

i=0

h1(i) · φ1(k − i) +
L−1∑

i=0

L−1∑

j=0

h2(i, j) · φ2(k − i, k − j)

L−1∑

i=0

L−1∑

j=0

L−1∑
m=0

h3(i, j, m) · φ3(k − i, k − j, k −m) + · · · (15)

where each term is an r-dimensional convolution of a Volterra kernel hr(kl, k2,
· · · , kr) with the r-dimensional autocorrelation function of the input sequence
φr(kl, k2, · · · , kr). The first term,

∑L−1
i=0 h1(i) · φ1(k − i), equals h1(k) for the

case of an MLS which means that φxy(k) is directly related to h1(k), the
linear behavior of the system. So whenever there is a fault harming the linear
behavior it will be displayed in the input/output crosscorrelation space. In this
case a similar Monte Carlo simulation is used to find the tolerance range in the
crosscorrelation space rather than the impulse response space, and to perform
a sensitivity analysis to form a test signature composed out of several highly
sensitive-to-fault crosscorrelation samples.

As a result, the PR BIST is valid for any time invariant analog system and
for all faults that harm the linear behavior. We do in fact suppose that most
often faults that affect the nonlinear behaviors do also affect the linear behavior.
The multi-level PR BIST can be used for nonlinear MEMS characterization and
it is only necessary for testing a rare category of nonlinear microsystems where
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some faults can be nonlinear and only influence the nonlinear behavior. In this
case, Volterra kernels can be used to test and diagnose this kind of faults.
Finding Volterra kernels can also be used to classify linear and nonlinear faults
which is important for fault injection and simulation. Faults that affect the
linear behavior (1st Volterra kernel) are linear faults, and faults that only affect
the nonlinear behavior (higher order Volterra kernels) are nonlinear faults.

8 Conclusions and further work

This chapter has presented an evaluation of different IR measurement methods
suitable for simple MEMS BIST techniques. These techniques have been applied
to a commercial MEMS accelerometer. As a result, the IRS is the most suitable
when even-order nonlinearities exist. We have proved that it has a very high
total immunity against even-order nonlinearities. Such nonlinearities vanish for
differential systems where the MLS can give the same results as the IRS. The
pseudorandom test method has been modified and applied to a purely non-
linear microbeam with electrothermal excitation. The resulting input/output
crosscorrelation samples are the Volterra kernel coefficients needed for model-
ing. Finally, the validity of pseudorandom methods for nonlinear devices has
been discussed. The multi-level PR BIST can be considered as an advanced
version of the PR BIST presented in Section 2 for linear MEMS. With the new
version we are capable of testing and characterizing any linear or nonlinear cir-
cuit. However the new PR BIST version demands the presence of a DSP on-chip
to calculate the Volterra kernels.

Finding Volterra kernels allows isolating the linear behavior from the non-
linear behavior of nonlinear systems. The linear impulse response was extracted
from the total response by using multi-level pseudorandom sequences. The tech-
nique is compatible with the PR BIST that was demonstrated for linear and
purely nonlinear systems. This is because we are still using pseudorandom stim-
uli suitable for on-chip implementation, and also because the test is again based
on the measurement of the linear IR where the tolerance range and the test sig-
nature are formed. The test technique can be simplified by finding the test
signature in the space of Wiener expansion coefficients rather than Volterra co-
efficients. According to the test signature only some necessary modified MLSs
are selected to form shorter multi-level sequences. In this way, less calculation
is needed to find only the several Wiener expansion coefficients that form the
test signature. We consider this step as the main perspective of this work.

Finally we introduce the definition of linear and nonlinear faults and we
show that the multi-level PR BIST is necessary when nonlinear faults exist.
The MEMS pseudorandom BIST techniques have been studied using a real
MEMS device where MLS signals were generated and analyzed using Labview
and a date acquisition card.
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Abstract. Scan technology increases the switching activity well beyond that of 
the functional operation of an IC. In this paper, we first discuss the issues of 
excessive peak power during scan testing and highlight the importance of 
reducing peak power particularly during the test cycle (i.e. between launch 
and capture) so as to avoid noise phenomena such as IR-drop or Ground 
Bounce. Next, we propose a scan cell reordering solution to minimize peak 
power during all test cycles of a scan testing process. The problem of scan cell 
reordering is formulated as a constrained global optimization problem and is 
solved by using a simulated annealing algorithm. Experimental evidence and 
practical implications of the proposed solution are given at the end of the 
paper. For ISCAS’89 and ITC’99 benchmark circuits, this approach reduces 
peak power during TC up to 51% compared to an ordering provided by an 
industrial synthesis tool. Fault coverage and test time are left unchanged by 
the proposed solution. 

1 Introduction 

While many techniques have evolved to address power minimization during the 
functional mode of operation, it is now mandatory to manage power during the test 
mode. Circuit activity is substantially higher during test than during functional mode, 
and the resulting excessive power consumption can cause structural damage or 
severe decrease in reliability of the circuit under test (CUT) [1-4]. 

The problem of excessive power during test is much more severe during scan 
testing as each test pattern requires a large number of shift operations that contribute 
to unnecessarily increase the switching activity [2]. As today’s low-power designs 
adopt the approach of “just-enough” energy to keep the system working to deliver 
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the required functions, the difference in power consumption between test and normal 
mode may be of several orders of magnitude [3]. 

In this paper, we first discuss the issues of excessive peak power consumption 
during scan testing. As explained in the next section, peak power consumption is 
much more difficult to control than average test power and is therefore the topic of 
interest in this paper. We present the results of an analysis performed on scan version 
of benchmark circuits, showing that peak power during the test cycle (i.e. between 
launch and capture) is in the same order of magnitude than peak power during the 
load/unload cycles. Considering that i) logic values (i.e. test responses) have to be 
captured/latched during the test cycle (TC) while no value has to be captured/stored 
during the load/unload cycles, and ii) TC is generally operated at-speed, we highlight 
the importance of reducing peak power during TC so as to avoid phenomena such as 
IR-drop or ground bounce that may lead to yield loss during manufacturing test. 

In order to reduce peak power during the test cycles, a straightforward approach 
would consist in reducing the resistance of the power/ground nets by over sizing 
power and ground rails. This solution has the advantage to be simple to implement 
and has limited side effect, i.e. low area overhead. However, this solution requires 
early in the design flow an estimation of the increase in power consumption during 
test with respect to power consumption during functional mode. As test data are 
generally not available at the early phases of the design process, this solution may 
not be satisfactory in all cases. 

Therefore, we propose a possible solution based on scan cell reordering. Scan 
reordering has already been shown to be efficient to reduce power during test [5, 6, 
7]. From a set of scan cells and a sequence of deterministic test vectors, a heuristic 
process provides a scan chain order that minimizes the occurrence of transitions and 
hence the peak power during TC. As reducing peak power during all test cycles of 
the test session - while maintaining each vector under the limit - is shown to be more 
important than targeting only one or few vectors exceeding a power limit, the 
problem has been formulated as a constrained global optimization problem. 
Considering its exponential nature, we have proposed a heuristic based on simulated 
annealing (SA) which provides good results. For ISCAS’89 and ITC’99 benchmark 
circuits, this approach reduces peak power during TC up to 51% compared to an 
ordering provided by an industrial synthesis tool. Fault coverage and test time are 
left unchanged by the proposed solution. 

The rest of the paper is organized as follows. In the next section, we discuss peak 
power issues during scan testing. In Section 3, we analyze peak power during the test 
cycles of scan testing and we highlight the importance of reducing this component of 
the power. In Section 4, we first describe how peak power is estimated in the 
proposed approach, and we present the scan reordering technique proposed to solve 
this combinatorial optimization problem. In the last part of Section 4, practical 
implications of this approach are discussed. Results obtained on benchmark circuits 
are reported in Section 5. Finally, Section 6 concludes the paper and gives the 
perspectives of this study. 
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2 Peak power issues 

Power consumption must be analyzed from two different perspectives. Average test 
power consumption is, as the name implies, the average power utilized over a long 
period of operation or a large number of clock cycles. Instantaneous power or peak 
power (which is the maximum value of the instantaneous power) is the amount of 
power required during a small instant of time such as the portion of a clock cycle 
immediately following the system clock rising or falling edge. In [4], it is reported 
that test power consumption tends to exceed functional power consumption in both 
of these measures. 

Average power consumption during scan testing can be controlled by reducing 
the scan clock frequency – a well known solution used in industry. In contrast, peak 
power consumption during scan testing is independent of the clock frequency and 
hence is much more difficult to control. Among the power-aware scan testing 
techniques proposed recently (a survey of these techniques is given in [8] and [9]), 
only a few of them relates directly to peak power. As reported in recent industrial 
experiences [3], scan patterns in some designs may consume much more peak power 
over the normal mode and can result in failures during manufacturing test. For 
example, if the instantaneous power is really high, the temperature in some part of 
the die can exceed the limit of thermal capacity and then causes instant damage to 
the chip. In practice, destruction really occurs when the instantaneous power exceeds 
the maximum power allowance during several successive clock cycles and not 
simply during one single clock cycle [3]. Therefore, these temperature-related or heat 
dissipation problems relate more to elevated average power than peak power. The 
main problem with excessive peak power concerns yield reduction and is explained 
in the sequel. 

With high speed, excessive peak power during test causes high rates of current 
(di/dt) in the power and ground rails and hence leads to excessive power and ground 
noise (VDD or Ground bounce). This can erroneously change the logic state of some 
circuit nodes and cause some good dies to fail the test, thus leading to unnecessary 
loss of yield. Similarly, IR-drop and crosstalk effects are phenomena that may show 
up an error in test mode but not in functional mode. IR-drop refers to the amount of 
decrease (increase) in the power (ground) rail voltage due to the resistance of the 
devices between the rail and a node of interest in the CUT. Crosstalk relates to 
capacitive coupling between neighboring nets within an IC. With high peak current 
demands during test, the voltages at some gates in the circuit are reduced. This 
causes these gates to exhibit higher delays, possibly leading to test fails and yield 
loss [10]. This phenomenon is reported in numerous reports from a variety of 
companies, in particular when at-speed transition delay testing is done [3]. Typical 
example of voltage drop and ground bounce sensitive applications is Gigabit 
switches containing millions of logic gates. 
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3 Analysis of peak power during scan 

During scan testing, each test vector is first scanned into the scan chain(s). After a 
number of load/unload clock cycles, a last shift in the scan chain launches the test 
vector. The scan enable (SE) signal is switched to zero, thus allowing the test 
response to be captured/latched in the scan chain(s) at the next clock pulse (see 
Figure 1). After that, SE switches to one, and the test response is scanned out as the 
next test vector is scanned in. 

There can be a peak power violation (the peak power exceeding a specified limit) 
during either the load/unload cycles or during TC. In both cases, a peak power 
violation can occur because the number of flip-flops that change value in each clock 
cycle can be really higher than that during functional operation. In [10], it is reported 
that only 10-20 % of the flip-flops in an ASIC change value during functional mode, 
while 35-40 % of these flip-flops commutate during scan testing. 

In order to analyze when peak power violation can occur during scan testing, we 
conducted a set of experiments on benchmark circuits. Considering a single scan 
chain composed of n scan cells and a deterministic test sequence for each design, we 
measured the current consumed by the combinational logic during each clock cycle 
of the scan process. We pointed out the maximum value of current during the n 
load/unload cycles of the scan process and during TC (which last during a single 
clock cycle). Note that current during TC is due to transitions generated in the circuit 
by the launch of the deterministic test vector Vn (see Figure 1). 

 
Figure 1. Scan testing and current waveform 

Identification of peak power violation cannot be done without direct comparison 
with current (or power) measurement made during functional mode. However, this 
would require knowledge of functional data for each benchmark circuit. As these 
data are not available, the highest values of current we pointed out are not 
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necessarily peak power (current) violations. There are simply power (current) values 
that can lead to peak power (current) violation during scan testing. Reports made 
from industrial experiences have shown that such violations can really occur during 
manufacturing scan testing [3] [4]. 

The benchmarking process was performed on circuits of the ISCAS’89 and 
ITC'99 benchmark suites. We report in Table 1 the main features of these circuits. 
We give the number of scan cells, the number of gates, the number of test patterns 
and the fault coverage (FC) for each experimented circuit. All experiments are based 
on deterministic testing from the ATPG tool “TetraMAX™” of Synopsys [11]. The 
missing faults in the FC column are the redundant or aborted faults. Primary inputs 
and primary outputs were not included in the scan chain, but were assumed to be 
held constant during scan-in and scan-out operations. Random initial logic values 
were assumed for the scan flip-flops. 

Table 1. Features of experimented circuits 

Circuit # cells # gates # patterns FC (%) 

b04s 66 512 58 99.08 

b09 28 129 28 100 

b10 17 155 44 100 

b11s 31 437 62 100 

b12 121 904 94 100 

b13s 53 266 30 100 

b14s 245 4444 419 99.52 

b17 1415 22645 752 98.99 

s298 14 119 29 100 

s420 16 218 72 100 

s526 21 193 56 100 

s713 19 393 36 100 

s1196 18 529 137 100 

s1488 6 653 117 100 

s5378 179 2779 151 100 

s9234 228 5597 161 99.76 

s13207 669 7951 255 99.99 

s38417 1636 22179 145 100 

 
Results concerning peak power consumption are given in Table 2. We have 

reported the peak power (expressed in milliWatts) consumed during the load/unload 
cycles (second column), and that consumed during TC (third column). These values 
are a maximum over the entire test sequence. Power consumption in each circuit was 
estimated by using PowerMill® of Synopsys [12], assuming a power supply voltage 
of 2.5 Volts and technology parameters extracted from a 0.25 m digital CMOS 
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standard cell library. These results show that peak power consumption is always 
higher during the load/unload cycles than during TC. This result was quite 
predictable as the number of clock cycles during the load/unload phase is much more 
than one. More importantly, these results show that even if peak power is higher 
during the load/unload cycles, peak power during TC is in the same order of 
magnitude. This may lead to problematic noise phenomena during TC whereas these 
phenomena do not impact the load/unload process. Let us consider again the IR-drop 
phenomenon. As discussed earlier, it is due to a high peak current demand that 
reduces the voltages at some gates in the CUT and hence causes these gates to 
exhibit higher delays. The gate delays do not affect the load/unload process as no 
value has to be captured/stored during this phase. Conversely, the gate delays can 
really affect TC because the values of output nodes in the combinational logic have 
to be captured in the scan flip-flops. As this operation is generally performed at-
speed, this phenomenon is therefore likely to occur during this phase and negatively 
impact test results. We can therefore conclude that taking care of peak power during 
TC and trying to minimize the switching density of the circuit during this phase are 
really relevant and requires new development of dedicated techniques. 

Table 2. Peak power during scan testing 

Peak power consumption (mW) Circuit 

load/unload  test cycle 

b04s 77.50 59.60 

b09 34.43 30.48 

b10 27.88 23.71 

b11s 50.42 41.27 

b12 113.84 101.46 

b13s 61.09 52.92 

b14s 395.55 319.83 

b17 1009.96 962.23 

s298 30.06 29.83 

s420 48.15 27.87 

s526 47.88 45.26 

s713 23.57 18.76 

s1196 66.89 10.03 

s1488 81.86 76.83 

s5378 197.76 179.66 

s9234 359.68 339.88 

s13207 445.82 402.70 

s38417 1028.25 977.52 
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4 Scan cell ordering to reduce peak power 

Considering the fact that minimizing peak power during TC is needed, we propose a 
possible solution based on scan cell reordering. From the set of scan cells and a pre-
computed sequence of deterministic test vectors, a heuristic process provides a scan 
chain order that minimizes the occurrence of transitions and hence the peak power 
during TC. 

4.1 Estimating peak power during TC 

In the previous section, we reported that peak power during TC is due to transitions 
provoked in the circuit by the last scan shift that launches the deterministic test 
vector (Figure 1). In order to count the number of transitions generated during TC, 
and hence estimate the peak power consumption, we use a transition metric that has 
been shown to be strongly correlated to the switching activity at internal nodes of the 
CUT [13]. It consists in considering the pair of scan vectors (Vn-1, Vn), where Vn-1 is 
the vector preceding test vector Vn, and count the number of bits that have changed 
value between the two vectors (i.e. the Hamming distance). This metric is a good 
way to accurately estimate the power consumed during TC and hence avoid time-
consuming and size limited simulations during the search process. Actually, this 
metric can be simplified as it amounts to count the number of bit differences (0-1 or 
1-0) in vector Vn of length n. So, it means that only one vector (the test vector Vn) 
among the n scan vectors has to be considered for peak power estimation during TC. 

Note that for an exact estimation, we should also consider the extra bit difference 
that can occur when the first bit of a test vector differs from the last bit of the 
previous output response. However, as the number of bits in each test vector Vn is 
much greater than one for real-size circuits, this possible extra bit difference can be 
neglected. 

4.2 Problem formulation 

The problem of reordering scan cells to minimize peak power during TC can be 
tackled from two different perspectives. First, we can try to minimize peak power 
only for test vectors (among the l deterministic test vectors of the test sequence) that 
exceed a specified limit. This is a local optimization problem. In this case, the main 
difficulty consists in minimizing peak power for the vectors exceeding the limit 
without producing new “violation” vectors. The second way to tackle this problem is 
to try to minimize peak power during TC for all vectors of the test sequence while 
maintaining each vector under the limit. This is a constrained global optimization 
problem. In this case, the main difficulty consists in getting a significant reduction in 
peak power for all vectors while satisfying the constraint on the “violation” vectors. 
In Section 3, we reported that reducing peak power during TC is more important to 
avoid yield loss than to prevent temperature-related problems. This means that 
reducing peak power during all test cycles - while maintaining each vector under the 
limit - is more important than targeting only one or few vectors exceeding a power 
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limit. For this reason, we decided to search a solution for the constrained global 
optimization problem. Considering its exponential nature, we have proposed a 
heuristic solution that uses features of simulated annealing and solves the problem in 
a polynomial time. This solution is detailed below. 

4.3 Scan cell reordering by simulated annealing 

Scan cell reordering consists in determining the order in which the scan cells of a 
scan chain have to be connected to minimize the occurrence of transitions during all 
test cycles. It can be demonstrated that this combinatorial optimization problem is 
NP-hard - the number of possible solutions is n! where n is the number of scan cells 
in the scan chain. Due to its exponential nature, this problem cannot be solved by an 
exact method. Heuristics based on local search or evolutionary methods have 
therefore to be used [14]. 

We developed and implemented a heuristic solution based on Simulated 
Annealing (SA). SA has been used in various combinatorial optimization problems 
and has been particularly successful in circuit design problems [15]. As its name 
implies, SA exploits an analogy between the way in which a metal cools and freezes 
into a minimum energy crystalline structure (the annealing process) and the search 
for a minimum in a more general system. SA major advantage over other methods is 
its ability to avoid becoming trapped at local minima. The algorithm employs a 
random search which not only accepts changes that decrease a cost function f, but 
also some changes that increase it. 

The different steps performed by the SA heuristic are represented in the flow 
chart of Figure 2. Inputs to this algorithm are a set of scan cells and the deterministic 
test vectors generated assuming a given order of these scan cells in the scan chain. 
The output is an ordered scan chain with minimum peak power during the test 
cycles. The algorithm starts by randomly generating a set of solutions and select the 
best one sopt that satisfies the local constraint. The best solution is the one with the 
lowest cost f(sopt) expressed as the number of bit differences over the entire test 
sequence.  Then, the algorithm follows the two following main steps. First, a local 
search is made to find better solutions from the current optimum solution. Next, in 
order to escape from local minima, a global search is made in which solutions better 
than sopt (Δf < 0) are accepted when the local constraint is satisfied, and solutions 
worse than sopt (Δf > 0) can be accepted with a certain probability p=exp(-Δf/T). The 
temperature T is decreased during the search process so that the probability of 
accepting worse solutions gradually decreases. 

Some definitions are now given to clarify the flow chart of Figure 2.  

Generate new solution: build a scan chain with a new order of the scan 
flip-flops. 
Assess a solution: count the number of bit differences in each vector of 
the deterministic test sequence. The cost of a solution is obtained by 
summing these numbers. 
Verify local constraint: verify if all the test vectors are under the power 
limit with the current ordering solution. 
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Figure 2. Scan reordering flow chart 
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Δ f or verify the global constraint: compare the cost of the current solution 
(si or si′) with that of the best current solution sopt. Δf = f(si) - f(sopt). 
Weak-mutation: transposing few cells in the scan chain. 
Strong-mutation: transposing many cells in the scan chain. 
Annealing: is applied if no improvement of the best current solution sopt is 
obtained after a given number of iterations. 
Terminate search: occurs after a given number of iterations in the 
algorithm has been done or after a solution with a predefined minimum 
cost has been found. 

4.4 Practical implications 

Compared with existing low power scan techniques, our solution offers numerous 
advantages. The proposed approach works for any conventional scan design - no 
extra DfT logic is required – and both the fault coverage and the overall test time are 
left unchanged. However, several practical implications of this solution have to be 
discussed. 

First, the heuristic procedure does not explicitly consider constraints such as the 
placement of scan in and scan out pins or the existence of multiple scan chains with 
multiple clock domains in the CUT. In this case, the proposed technique has to be 
modified to allow these constraints to be satisfied. For example, scan chain heads 
and tails may be predefined and pre-assigned in the case of constraints on scan in and 
scan out pin position. This kind of pre-assignment may be important to avoid long 
wires between external scan/out pins and scan chain heads/tails. 

In the case of circuits with multiple scan chains and multiple clock domains, 
which are common in industrial designs, almost no modification of the proposed 
technique is required. Actually, each scan chain can be considered separately and the 
heuristic procedure has to be applied successively on each scan chain. 

In fact, the most important practical aspect which has to be addressed is the 
impact on routing. In VDSM technologies, routing is becoming a dominant factor in 
area, performance and power consumption. In traditional DfT flows, scan routing is 
also one of the main concerns when designing a scan chain. After scan synthesis, 
connecting all the scan cells together may cause routing congestion during the place-
and-route stage of the design flow, resulting in area overhead and timing closure 
issues. To avoid congestion problems, scan chain optimization is traditionally used 
after placement. Formally, scan chain optimization is the task of finding a new order 
for connecting the scan elements such that the wire length of the scan chain is 
minimized. Several scan chain reordering solutions have been proposed recently to 
address the above stated problems [16, 17]. 

The main drawback of the scan ordering technique proposed in this paper is that 
power-driven chaining of scan cells cannot guarantee short scan connections and 
prevent congestion problems during scan routing. In this context, the use of a power-
driven scan ordering technique, though efficient, is questionable. To avoid this 
situation, several solutions can be proposed depending on the DfT level at which the 
peak power problem is considered. First, if scan reordering can be performed before 
scan synthesis (in this case, flip-flop placement is not already done), the solution is 
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to consider a DfT synthesis tool that can accept a fixed scan cell order (produced by 
our heuristic) and from which it can optimally place and route the scan resources. 
Now, if scan reordering cannot be done before scan synthesis (in this case, flip-flop 
placement is known and fixed), a solution to consider routing is to apply a clustering 
process as the one developed in [7] that allows to design power-optimized scan 
chains under a given routing constraint. In this case, the routing constraint is defined 
as the maximum length accepted for scan connections. Results given in [7] have 
shown very good tradeoff between test power reduction and impact on scan routing. 
Note that in all situations, ATPG is done earlier in the design flow. 

5 Experimental results 

The goal of the experiments we performed has been to measure the reduction in peak 
power obtained during TC from the proposed scan cell ordering process. The results 
are summarized in Table 3. 

Table 3. Peak power saving in the CUT during TC 

Industrial Solution Proposed Ordering Technique Circuit 

peak [mW]  peak [mW]  reduct. (%) 

b04s 35.96 29.43 18.2 

b09 18.91 9.22 51.2 

b10 14.38 12.53 12.8 

b11s 29.03 24.03 17.2 

b12 82.13 63.73 22.4 

b13s 39.97 27.60 30.9 

b14s 197.17 172.87 12.3 

b17 949.47 837.70 11.8 

s298 17.11 13.16 23.1 

s420 14.63 10.78 26.3 

s526 25.79 20.02 22.4 

s713 10.20 8.17 20.0 

s1196 4.98 4.03 19.0 

s1488 42.42 38.68 8.8 

s5378 150.86 118.85 21.2 

s9234 247.32 200.74 18.8 

s13207 405.56 337.03 16.9 

s38417 993.22 746.08 24.9 
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For each circuit, we report the peak power during TC obtained first from an 
ordering provided by an industrial tool and next with the proposed ordering 
technique. For the evaluation in both cases, we used the deterministic test sequences 
presented in Table 1 assuming random initial logic values for the scan flip-flops. The 
industrial ordering has been performed by using the layout synthesis tool Silicon 
Ensemble® of Cadence Design System [18]. In the context of our study, this 
synthesis tool allows first to perform scan insertion in the design corresponding to 
the experimented circuit and next the placement and routing of flip-flops in the 
design with respect to delay and area constraints. For each circuit, the design and the 
ordering of the scan chain have been carried out with a random placement of the 
scan-in and scan-out pins. Peak power is expressed in milliWatts and the values 
reported for each circuit are a mean of peak power (or instantaneous power) 
consumed during each test cycle of the scan process. Note that these values differ 
from those in Table 2 which represent a maximum over the entire test sequence.  

The last column in Table 3 shows the reduction in peak power dissipation 
expressed in percentages. These results on benchmark circuits show that peak power 
reduction up to 51% can be achieved with the proposed ordering technique. 
Concerning computing CPU time, ordering solutions are obtained in less than 10 
seconds for small circuits up to 2 minutes for big circuits. Simulations have been 
performed on a Sun Solaris 9 workstation with 2 gigabytes of RAM. 

By reducing the number of transitions during TC for minimizing peak power 
consumption, we need to take care of the possible reduction in defect coverage, 
particularly for timing related defects. For this purpose, we have measured the 
transition fault coverage of the test sequence applied to each CUT with and without 
power-aware reordering. Results are listed in Table 4. 

Table 4. Transition fault coverage 

Non-Robust Transition Fault Coverage Circuit 

without reordering  with power-aware ordering 

b11s 62.94 66.78 

b12 64.61 61.07 

b13s 63.60 64.95 

b14s 69.10 66.05 

b17 48.08 47.06 

s1196 17.98 18.88 

s1488 58.75 62.46 

s5378 64.83 64.10 

s9234 52.67 52.50 

s13207 69.3 72.02 

s38417 78.5 77.6 
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As can be seen, the non-robust transition fault coverage achieved when power-
aware scan (bit) ordering is done (third column in Table 4) is roughly the same than 
that obtained without any power consideration (second column). This can be 
explained by the fact that our SA heuristic reduces the mean of peak power over all 
test cycles - while maintaining each vector under the limit. By this way, it may occur 
that the switching activity during some test cycles with a very low initial value is 
increased, thus compensating the decrease obtained on test cycles with a very high 
initial value. Anyway, results reported in Table 4 prove the efficiency of our 
technique to maintain initial defect coverage level. 

In addition to these evaluations, we have performed another set of 
experimentation to measure the effectiveness of the proposed reordering technique 
on the peak power reduction during load/unload cycles. As previously, results are 
summarized in Table 5. 

Table 5. Peak power saving in the CUT during load/unload cycles 

Industrial Solution Proposed Ordering Technique Circuit 

peak [mW]  peak [mW]  reduct. (%) 

b04s 58.07 53.85 7.3 

b09 29.05 26.09 10.2 

b10 21.37 20.1 5.9 

b11s 40.55 37.94 6.4 

b12 97.89 82.45 15.8 

b13s 49.49 46.78 5.5 

b14s 335.8 329.7 1.8 

s298 22.33 21.47 3.9 

s420 21.5 19.57 9.0 

s526 36.15 31.6 12.6 

s713 18.39 18.23 0.9 

s1196 36.53 36.85 -0.9 

s1488 55.0 54.44 1.0 

s5378 167.23 157.99 5.5 

s9234 322.15 317.86 1.3 

 
Results show that the proposed reordering solution provides a small reduction 

(about 5.7% in average) of the peak power during load/unload cycles and some time 
an increase as for the s1196. Such results were quite predictable as the reordering 
solution target only the TC. Based on this statement, our future work will therefore 
focus on the setting up of a new peak power technique allowing peak power 
reduction during TC but also during load/unload cycles. 
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6 Conclusion and future work 

In this paper, we have proposed a scan cell reordering technique for peak power 
reduction during the test cycles of a scan testing process. Peak power reduction 
during TC of up to 51% can be achieved with the proposed technique, so that 
possible noise phenomena such as ground bound or IR-drop can be avoided during 
scan testing. Fault coverage and test time are left unchanged by the proposed 
technique. 

As mentioned before, the main drawback of the scan ordering technique 
proposed in this paper is that power-driven chaining of scan cells cannot guarantee 
short scan connections and prevent congestion problems during scan routing. In 
addition, the proposed reordering technique does not enough reduce the peak power 
during load/unload cycles. Direction for the future of this work will be on power-
aware test pattern modification. Recent studies and improvements made to ATPG 
tools have led to power-sensitive ATPG options, to create relatively low-power 
patterns for scan shifting. For example, wherever possible, ATPG can minimize 
internal state transitions during scan shifting by filling adjacent flip-flops with the 
same state, instead of using random fill. Evaluations have shown up 50% power 
reduction achieved with this approach. A similar approach targeting peak power 
reduction during TC will therefore be developed. 
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Abstract. This paper presents the design of a function-specific dynam-
ically reconfigurable architecture for error detection and error correc-
tion. The function-unit is integrated in a pipelined 32 bit RISC processor
and provides full hardware support for encoding and decoding of Reed-
Solomon Codes with different code lengths as well as error detection
methods like bit-parallel Cyclic Redundancy Check codes computation.
The architecture is designed and optimized for the usage in the medium
access control layer of mobile wireless communication systems and pro-
vides simultaneously hardware support for control-flow and data-flow
oriented tasks.

1 Introduction

For wireless communication systems the capability of receivers to detect and
correct transmission errors is of great importance. While error detection meth-
ods require bandwidth expensive retransmissions, error correction methods lead
to a better bandwidth efficiency. Albeit this advantage, error correction codes
are not often used for mobile wireless communication systems due to their de-
coding complexity. Software solutions would require powerful processors, lead-
ing to an unacceptable power consumption for battery powered mobile de-
vices. Hardware solutions are often optimized for throughput, yet are inflexible
and do not consider the requirements of mobile terminals. For mobile wireless
communication terminals, the critical design parameter is not throughput but
area efficiency and power consumption. Though works exist on area-efficient
or (re)configurable Reed-Solomon decoders (e.g. [2, 15]), the potentials of dy-
namically reconfigurable approaches concerning hardware savings are often not
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taken into consideration. However, temporal reuse of hardware within the de-
coding offers the best potential to achieve an area-efficient design. The inherent
hardware overhead of reconfigurable solutions can be avoided by restricting
the reconfiguration capabilities to one application area, resulting in a function-
specific reconfigurable device.

In the following the design of a dynamically reconfigurable function-unit
(RFU) supporting Cyclic Redundancy Checks (CRC) and Reed-Solomon Codes
with different code lengths is presented. The RFU is optimized regarding area
and fulfills the performance requirements for actual wireless communication
standards. In combination with a processor, the RFU allows the design of a
flexible solution for the MAC (M edium Access Control) layer of WLANs. Re-
configuration can be done during runtime, allowing the processor to utilize all
arithmetic components and memory elements of the RFU for additional tasks
like multiplication in the Galois Field required for encryption standards like
AES (Advanced Encryption S tandard) [1].

The outline of the contribution is as follows: Section 2 provides a short
review of error detection and error correction codes. In Section 3, a reference
design for a Reed-Solomon decoder is presented. This decoder was used as a
starting point for the design of the function-specific reconfigurable architecture
introduced in Section 4. Section 5 deals with the system integration of the RFU,
and Section 6 presents performance and synthesis results. Finally, conclusions
are given in Section 7.

2 Error Detection and Correction Codes

Error detection codes have efficiently been employed in many communication
protocols. They enable the receiver to detect whether a received code word is
corrupted or not. As the receiver does not have the information required for
correcting the error, a retransmission of the corrupted data has to be initiated.
Error correction codes extend the redundant part of the message with informa-
tion so that errors up to a certain degree of corruption can be corrected. Thus
the retransmission probability can be reduced considerably by using forward
error correction (FEC).

2.1 Cyclic Redundancy Check

Cyclic Redundancy Check codes are a powerful subclass of error detection codes
and are well-suited for detecting burst errors. The basic idea is to expand a k-
bit message, described by a polynomial u(x) with coefficients in {0,1}, with
the remainder Rg(x) of the division of xn−k · u(x) by a m = (n − k)th-order
generator polynomial g(x) using modulo-2 arithmetic, resulting in an n-bit code
word v(x). If v(x) is affected by an error polynomial e(x), a receiver can check
the integrity of the received data ve(x) = v(x)+ e(x) by dividing ve(x) by g(x).
A non-zero remainder r(x) indicates the presence of errors [14].
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There exist two common approaches to perform CRC computation, a bit-
serial and a bit-parallel one. The serial approach uses a linear feedback shift
register (LFSR) based on the generator polynomial g(x). One bit is processed
per cycle which results in low performance. The parallel CRC computation
method is based on multiplications in Galois Fields. Here, a message u(x) is
divided into blocks of length m = n−k denoted by Wi(x). Using the congruence
properties of modulo-2 operations and the fact that the degree of Wi(x) is less
than m, the code word v(x) can be written as v(x) = WN−1 ⊗ βN−1 ⊕ . . . ⊕
W0 ⊗ β0, where ⊗ and ⊕ denote the multiplication and addition over a Galois
Field GF (2m), respectively. The coefficients βi depend only on the generator
polynomial g(x) and can be computed in advance. A more detailed description
can be found in [11].

2.2 Reed-Solomon Codes

Reed-Solomon (RS) Codes are a very common group of systematic linear block
codes and are based on operations in Galois Fields. A RS(n,k) code word v(x)
consists of n symbols of length m, divided into k message symbols and (n− k)
parity symbols. Up to (n− k) symbol errors can be detected and t = (n− k)/2
symbol errors can be corrected.

The binary representation of the original data is segmented into k symbols
of m bits. These symbols are interpreted as elements of a Galois Field GF (2m),
constructed by a primitive polynomial p(x) of degree m. The resulting message
polynomial u(x) is then multiplied by the polynomial xn−k and added to the
remainder polynomial r(x) to form the code word polynomial v(x) = xn−k ·
u(x) + r(x). The term r(x) is the remainder of the division of xn−k · u(x) by a
generator polynomial g(x) of degree n− k.

Fig. 1. Reed-Solomon Decoder Structure

Decoding Reed-Solomon Codes is much more complex. As shown in figure
1, the decoding process can be divided into four processing blocks.
Syndrome Calculation: First, the syndrome polynomial S(x) =

∑2t−1
i=0 Si ·xi

is determined. In case S(x) is zero, the received word w(x) can be assumed
to be error free. Si is defined as Si =

∑n−1
j=0 wj · αij , where α is a root of the

primitive polynomial p(x) using the power notation for elements in GF (28).
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Euclid’s Algorithm: In the second step, the error locator polynomial σ(x)
and the error value polynomial ω(x) are calculated by solving the key equation
S(x) · σ(x) = ω(x) mod x2t. This is done by using Euclid’s Algorithm which
can be summarized as follows [9, 5]: Three temporary polynomials R(x), B(x)
and Q(x) are introduced. They are initialized as R−1(x) = x2t, R0(x) = S(x),
B−1(x) = 0 and B0(x) = 1. For the i-th iteration, the equations Ri(x) =
Ri−2(x) − Ri−1(x) · Qi−1(x) and Bi(x) = Bi−2(x) − Bi−1(x) · Qi−1(x) are
solved, where Qi−1(x) is the quotient and Ri(x) is the remainder of the divison
of Ri−2(x) by Ri−1(x). This is done for s iterations until the degree of Ri(x) < t.
The error locator polynomial is defined as σ(x) = Bs(x)

Bs(0) and the error value

polynomial as ω(x) = Rs(x)
Bs(0) .

Chien Search: This block determines the error positions in the received symbol
block. To this end, the roots αi (1 ≤ i ≤ 8) of the error locator polynomial σ(x)
are determined, e.g. it is checked whether σ(αi) = 0. This is done by means of
an exhaustive search over all possible field elements αi in GF (28). In addition,
the derivate σ′(αi) is determined.
Forney Algorithm: The last step consists of calculating the error value ei =
ω(αi)
σ′(αi) (0 ≤ i ≤ n − 1). This value is added to the received symbol to correct
the error.

3 Reed-Solomon Decoder Structure

In the following, the hardware design of a reference Reed-Solomon decoder is
presented. The decoder is capable to support variable n and k values with an
error correction capability of up to eight symbol errors (t ≤ 8). This decoder
structure is then mapped onto the function-specific reconfigurable architecture
in Section 4.

3.1 Galois Field Arithmetic

All operations on Reed-Solomon Codes RS(n,k) are defined at byte-level, with
bytes representing elements in a Galois Field GF (28). Addition (and substrac-
tion) in GF (28) result in a bitwise XOR operation denoted by ⊕. Multiplication
and division are much more complex and depend on the used primitive polyno-
mial. To date, numerous works have been devoted to the design of configurable
Galois Field multipliers (e.g. see [8]). Most of them realize bit-serial architec-
tures. Yet, for the proposed reconfigurable architecture, single cycle bit-parallel
multipliers should be used in order to minimize the latency of the decoder.

The structure of a bit-parallel multiplier is presented in figure 2. Com-
putation is done by a repeated application of a xtime (xt) operation, which
is a left shift and a subsequent conditional bitwise XOR operation at byte-
level [1, 10]. The structure of an xtime module for the primitive polynomial
p(x) = x8 + x4 + x3 + x + 1 is shown in figure 3. In order not to restrict the
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Fig. 2. Structure of a bit-parallel GF (28) multiplier

design to a fixed primitive polynomial, an extended version of the xtime oper-
ation has been designed. This gxtime module can be configured to support any
primitive polynomial. Its structure is shown in figure 4.
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Fig. 4. GXtime Module

Division in Galois Fields is done by an inversion followed by a multiplication.
As described in [4, 12] Euclid’s Algorithm or Fermat’s Theorem can be used
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for the inversion. In the reference architecture a third method based on look-
up tables is used. Although this approach requires more chip area than other
methods, the look-up tables were chosen since they offer higher flexibility and
higher speed. In the subsequent reconfigurable architecture the look-up tables
can also be used for several other purposes.

3.2 Reed-Solomon Decoder Blocks

The hardware structure of the Reed-Solomon decoder is based on the block di-
agram presented in figure 1. For the Syndrome Calculation, a hardware design
derived from [9, 15, 7] is used. This design mainly consists of 2t multiply-
accumulate circuits and requires n clock cycles to calculate the syndrome poly-
nomial.

Fig. 5. Euclidean Algorithm Block [9]

Euclid’s Algorithm is realized by using a structure as shown in figure 5. It is
partitioned in a multiply and a divider module. The divider performs the divi-
sion Ri−2(x)

Ri−1(x) and generates the quotient Qi−1(x) and the new remainder Ri(x)
in each of the n−k

2 iterations. Each iteration requires three clock cycles. The
multiply module uses Qi−1(x) to compute Bi(x). The output of the multiply
module forms the error locator polynomial σ(x) while the result of the divider
module is the error value polynomial ω(x). In total 25 GF (28) multipliers are
required: 16 for the divider module and 9 for the multiply module. A more
detailed description of the realization of Euclid’s Algorithm can be found in [9].

The Chien Search block requires two clock cycles for initialization and then
computes ω(αi), σ(αi) and σ′(αi) simultaneously in each clock cycle. For the
computation, 8 GF (28) feed-back multipliers are used for determining ω(αi),
and 10 for calculating σ(αi). By calculating σ(αi) as a sum of its coproducts
σ(αi) = σeven(αi) + σodd(αi), the computation of σ′(αi) does not require any
extra hardware resources, as σodd(αi) = σ′(αi) · αi.

The last block inside the Reed-Solomon decoder represents the Forney Al-
gorithm. The division of ω(αi)

σ′(αi) is realized by an inversion and a multiplication.
For inversion a look-up table is used. The error values ei are added to the re-
ceived symbols stored in a FIFO. In total n clock cycles are required. Figure
6 shows the error dectection combined with the error correction using Forney
Algorithm.
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Fig. 6. Error Detection and Correction[9]

4 Reconfigurable Function-Unit

The design of the reconfigurable architecture was motivated by the idea to
accomplish an integrated design capable to perform error detection and error
correction algorithms as mentioned before. Designated to be part of a recon-
figurable function-unit in a pipelined processor, the architecture allows direct
access to all memory elements and arithmetic blocks, providing hardware sup-
port for additional tasks. The architecture is optimized in terms of hardware
efficiency and flexibility, yet its flexibility is restricted to a degree which can
be exploited by the dedicated application area. The RFU offers two levels of
(re)configuration. On the one hand, the RFU can be configured to perform dif-
ferent tasks, e.g. CRC computation or Reed-Solomon Code encoding/decoding
with different code lengths, on the other hand dynamic reconfiguration is used
to achieve a huge hardware reuse within one task, resulting in an area-efficient
design.
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Fig. 7. Reconfigurable Function-Unit (RFU)
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Figure 7 shows the structure of the RFU, which is composed of four different
blocks. The ECM block (E rror Control M odule) provides hardware support for
error detection and error correction algorithms. The AES block is mentioned for
the sake of completeness only. As the RFU is designated for the use in processors
realizing the MAC-layer of WLANs, the AES block is integrated to provide
hardware support for encryption/decryption tasks. A description of the AES
block can be found in [13]. The two remaining blocks are the LUT Module and
the Common Resource block. The LUT Module combines all memory elements
of the AES and ECM blocks while the Common Resource block combines all
complex arithmetic elements like the configurable Galois Field multipliers.

4.1 Error Control Module

The structure of the ECM block is depicted in figure 8. It comprises of two
major blocks, Block A and Block B. The two blocks are derived from the sym-
metry of the underlying hardware structure. Block A is used for the Syndrome
Calculation and RS encoding. Block B is used for Forney Algorithm and CRC
encoding/decoding. Euclid’s Algorithm and Chien Search require both, Block A
and Block B. The structure of the cells inside Block A and Block B can be found
in figure 9 and figure 10, respectively. Note, that the Galois Field multipliers
shown in figure 9 and figure 10 are not realized in the cells but in the Common
Resource block of the RFU.
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Fig. 8. Structure of Error Control Module

The Input Module of the ECM block stores constants required during
processing and buffers the input data while the Output Module buffers the
output data. These input and output buffers ease the programming of the RFU
as no strict timing has to be met while accessing the ECM block. In addition,
the gap between the 8-bit data path of the ECM and the 32-bit data path of
the processor is bridged.
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Fig. 9. Structure of Block A

Fig. 10. Structure of Block B

4.2 Dynamic Reconfiguration

Computations like Reed-Solomon Code decoding require several reconfigura-
tions at runtime. In order to release the processor from the control overhead
of continuous reconfiguration, the control logic of the RFU is capable of per-
forming a sequence of configuration steps autonomously. The structure of the
reconfiguration control logic is shown in figure 11.

The main part of the control logic are its configuration tables, divided into
three sub-tables (Table 1,Table 2/4 and Table 3/5 ). These tables store the con-
figuration vectors for the RFU and can autonomously be loaded by the control
logic with configuration data from an external memory. The configuration ta-
bles are composed as follows: Tables 3/5 are used for storing vectors which are
fixed for a sequence of configurations. Tables 2/4 store configuration vectors
for different steps of a sequence of configurations and table 1 determines the
sequence of configurations. The execution of the sequence of configurations is
controlled by a run unit inside the control logic.
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Fig. 11. Reconfiguration Control Logic

In each clock cycle a new entry in configuration table 1 is selected by the
run unit. In total 128 entries are provided. Processed configurations can be
exchanged at runtime, enabling sequences of configurations with more than 128
steps. One table entry of table 1 consists of eight bits. Three of these bits are
either passed directly to the RFU or are used by the run unit for realizing
(un)conditional jumps and loops. The other five bits of table 1 are used as an
address for table 2 or table 4, consisting of 32 x 32 bits each. Table 3 and
table 5 have a capacity of 32 bits each. Besides their usage for storing the
fixed part of the configuration vector, they can also be used to provide the run
unit with the number of iterations for repeated execution and with the offset
values for (un)conditional jumps. This subdivision of the configuration memory
allows to reduce the required size of configuration memory as not the complete
configuration vector of 67 bits has to be stored for each step of the sequence. The
division also eases the reprogramming. Only one table combination table 2/3 or
table 4/5 can be active at runtime. The other combination can be reprogrammed
without affecting the system.

5 Processor Integration

The RFU was integrated into a 32 bit 5 stage pipelined RISC core, derived from
the DLX architecture [3]. Figure 12 shows the simplified datapath of the RISC
processor with the integrated RFU. All changes made to the original datapath
are highlighted. The RFU is placed next to the other function-units and utilizes
the same datapaths to access the register files. The output of the RFU is non-
registered. This constellation allows a full integration of the new function-unit
in the pipeline structure of the processor. It also eases the integration into other
processor designs.
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In order to configure and program the RFU, three new instructions, one
for configuration and two for execution, are added to the instruction set. The
new instructions are passed from the instruction decode unit directly to the
configuration control unit, which either performs the loading of the configura-
tion memory or passes the instructions to the run control logic. By specifying
the start address of the configuration data, block size, configuration table and
table entry, the configuration data is downloaded by the configuration control
unit autonomously to the dedicated configuration table. In the meantime the
processor can continue to execute its program.

For the operation of the RFU, two instructions are available. The first oper-
ation performs a single-cycle operation while the second operation can be used
for specifying a multi-cycle operation. Figure 13 shows the format of the two
instructions. The multi-cycle instruction can be used to initiate an autonomous
execution of the RFU over several clock cycles. In order to avoid pipeline haz-
ards, the multi-cycle instruction does not contain a destination address for the
result of the operation. Therefore a singlecycle instruction has to be used for
writing the result to the register file. A more detailed description of the recon-
figuration and system integration can be found in [13].
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Fig. 13. Operation Instructions

6 Results

A test system was synthesized using Synopsys’ Design Analyzer with a 0.25µm
1P5M CMOS standard cell technology. The test system consists of the RFU
and the modified DLX processor as presented in the last section. For larger
memories like the LUT Module inside the ECM block and the configuration
tables of the RFU control logic, RAM macro cells have been employed. All area
values are normalized to the area of an eight bit multiplier without pipelining.

Table 1. Reed-Solomon Decoder Structure

Module Area (normalized) Freq.[MHz]

CRC En-/Decoder 9.9 205

RS Encoder 11.4 209

RS Decoder 95.0 59

Total Area 116.3 -

Table 2. Synthesis Results of the ECM Block

Module Area (normalized) Freq.[MHz]

Block A 9.3 140

Block B 10.0 172

Other Blocks 3.0 694

ECM 22.3 137

Synthesis and performance results of the reference designs are presented in
table 1. For CRC computation a hardware architecture based on parallel CRC-
8 encoding/decoding using Galois Field arithmetic was used. Values for Reed-
Solomon encoder and decoder base on a RS(255,239) code using the architecture
presented in section 3. The synthesis results for the ECM block can be found
in table 2. The ECM block requires only about 20% of the area of the reference
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design. Even if the Common Resource block and the LUT Module of the RFU
are counted to the area of the reconfigurable design, hardware savings of up
to 28% in comparison with the standard implementation presented in section
3 can be achieved. These hardware savings ease the design of area efficient
ASIC solutions for mobile terminals when using the RFU for error detection
and correction instead of standard implementations.

Table 3. Throughput of the Reference Design and the Reconfigurable Architecture

Application Recon. Arch. Ref. Design

RS(255,239) enc. 735.8 Mbps 1568.5 Mbps

RS(255,239) dec. 372.8 Mbps 220.7 Mbps

CRC8 enc./dec. 2512.3 Mbps 13113.7 Mbps

Throughput values for both architectures are given in table 3. For encoding
RS(255,239) codes and CRC8 encoding/decoding the reference architecture is
faster than the reconfigurable design, but for RS(255,239) decoding a speed-
up of 1,68 could be achieved. All throughput rates are more than sufficient
in relation to the data rates required for mobile terminals. Taking the actual
WLAN standard IEEE 802.11a as a reference, data rates of only 42 Mbps are
required at the MAC-layer [6].

Table 4. Synthesis Results for the RFU

Module Area (normalized) Freq.[MHz]

Basic CPU 44.3 199

ECM Block 22.3 137

AES Block 19.1 138

LUT Module 29.0 588

Common Res. 20.4 201

RFU Control 37.3 244

Total Design 170.0 98

Synthesis results for the DLX processor with the RFU and all components
of the RFU can be found in table 4. The chip area of the complete design has
a normalized value of about 170. Only 13% of the total chip area are required
by the ECM block. The area fraction of the RFU is about 74.1% of the overall
area. A huge part of the RFU is constituted by the configuration tables (648
bytes) and the look-up tables in the LUT module (1024 bytes). The memory
blocks add up to a normalized area of about 66 which is about 39% of the
overall area. To maximize the utilization of these memory blocks, the input and
output ports of the look-up tables are directly accessible and thus can be used
as additional memory for the processor.
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7 Conclusion

In this paper a function-specific dynamically reconfigurable architecture for er-
ror detection and error correction has been presented. The architecture offers
two levels of (re)configuration; on the one hand it can be configured to per-
form several algorithms (e.g. CRC, Reed-Solomon Codes with variable code
parameters), on the other hand it reuses hardware components by means of
dynamic reconfiguration. Synthesis and performance results have proved that
the architecture offers an attractive alternative to standard implementations,
in particular as its hardware resources can be utilized by the processor for
additional tasks.

Acknowledgement

The work was supported by the German Research Foundation (DFG - Deutsche
Forschungsgemeinschaft) within the special research program Reconfigurable
Computer Systems under GL 155/25.

References

1. Advanced Encryption Standard (AES), November 2001. Federal Information
Processing Standards Publication 197.

2. Hyunman Chang and Myung H. Sunwoo. Design of an Area Efficient Reed-
Solomon Decoder ASIC Chip. IEEE Workshop on Signal Processing Systems,
pages 578–585, October 1999.

3. J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann Publishers, 1996.

4. Yuh-Tsuen Horng and Shyue-Win Wei. Fast Inverters and Dividers for Finite
Field GF (2m). IEEE Asia-Pacific Conference on Circuits and Systems, pages
206–211, December 1994.

5. Huai-Yi Hsu and An-Yeu Wu. VLSI Design of a Reconfigurable Multi-mode Reed-
Solomon Codec for High-Speed Communication Systems. Proceedings of the IEEE
Asia-Pacific Conference on ASIC, pages 359–362, August 2002.

6. Jangeun Jun, Pushkin Peddabachagari, and Mihail Sichitiu. Theoretical Maxi-
mum Throughput of IEEE 802.11 and its Applications. In NCA ’03: Proceedings
of the Second IEEE International Symposium on Network Computing and Appli-
cations, page 249, Washington, DC, USA, 2003. IEEE Computer Society.

7. Dong-Sun Kim, Jong-Chan Choi, and Duck-Ji Chung. Implementation of High-
Speed Reed-Solomon Decoder. 42nd Midwest Symposium on Circuits and Sys-
tems, 2:808–812, August 1999.

8. P. Kitos, G. Theodoridis, and O. Koufopavlou. An efficient reconfigurable mul-
tiplier architecture for Galois field GF (2m). Microelectronics Journal, 34(11),
November 2003. Elsevier.

9. Hanho Lee, Meng-Lin Yu, and Leilei Song. VLSI Design of Reed-Solomon Decoder
Architectures. Proceedings of the IEEE International Symposium on Circuits and
Systems, 5:705–708, May 2000.

296 Pionteck et al.



On The Design of A Dynamically Reconfigurable Function-Unit

10. Edoardo D. Mastrovito. VLSI Designs for Multiplication over Finite Fields
GF (2m). In AAECC-6: Proceedings of the 6th International Conference, on Ap-
plied Algebra, Algebraic Algorithms and Error-Correcting Codes, pages 297–309,
London, UK, 1989. Springer-Verlag.

11. H. Michael Ji and Earl Killian. Fast Parallel CRC Algorithm and Implementation
on a Configurable Processor. IEEE International Conference on Communications,
3:1813–1817, April 2002.

12. Christof Paar and Martin Rosner. Comparison of Arithmetic Architectures for
Reed-Solomon Decoders in Reconfigurable Hardware. In Kenneth L. Pocek and
Jeffrey Arnold, editors, IEEE Symposium on FPGAs for Custom Computing Ma-
chines, pages 219–225, Los Alamitos, CA, April. IEEE Computer Society Press.

13. Thilo Pionteck, Thorsten Staake, Thomas Stiefmeier, Lukusa D. Kabulepa, and
Manfred Glesner. Design of a Reconfigurable AES Encryption/Decryption Engine
for Mobile Terminals. Proceedings of the 2004 IEEE International Symposium on
Circuits and Systems, 2:545–548, May 2004.

14. Tenkasi V. Ramabadran and Sunil S. Gaitonde. A Tutorial on CRC Computa-
tions. IEEE Micro, 8(4):62–75, July 1988.

15. Sourav Roy, Wolfgang Wilhelm Martin Bücker, and B.S. Panwar. Reconfigurable
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Abstract. In this paper we investigate the exact optimization of BDDs
with respect to path-related objective functions. We aim at a deeper
understanding of the computational effort of exact methods targeting
the new objective functions. This is achieved by an approach based on
Dynamic Programming which generalizes the framework of Friedman
and Supowit. A prime reason for the computational complexity can be
identified using this framework.
For the first time, experimental results give the minimal expected path
length of BDDs for benchmark functions. They have been obtained by
an exact Branch&Bound method which can be derived from the general
framework. The exact solutions are used to evaluate a heuristic ap-
proach. Apart from a few exceptions, the results prove the high quality
of the heuristic solutions.

1 Introduction

Reduced ordered Binary Decision Diagrams (BDDs) were introduced in [6] and
are well-known from logic synthesis and hardware verification.

Run time and space requirement of BDD-based algorithms depend on the
size of the BDD. However, this size is very sensitive to a chosen variable ordering
[6]. In general, determining an optimal variable ordering is a difficult problem.
It has been shown that it is NP-complete to decide whether the number of
nodes of a given BDD can be improved by variable reordering [4]. Therefore,
heuristic methods have been proposed, based on structural information or on
dynamic reconstruction [23]. Evaluation of heuristic solutions showed that they
are often far away from the best known solution. Consequently, for applications
like logic synthesis using multiplexor-based BDD circuits exact methods are
also required: here a reduction in the number of BDD nodes directly transfers
to a smaller chip area. Moreover, exact methods can provide the basis for the
evaluation of heuristics.

Similar questions arise for alternative, path-related objective functions. The
optimization with respect to the number of paths in a BDD has been studied in
[14]: the number of paths in a circuit derived from a BDD corresponds to the
number of paths in the BDD. It is proportional to the number of faults under the
path delay fault model. Hence minimizing the number of paths can significantly
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reduce the time for testing BDD circuits [10]. It also can be used for minimizing
Disjoint-Sum-Of-Products (DSOPs) which are used in the calculation of spectra
of Boolean functions or as starting point for the minimization of Exclusive-
Sum-Of-Products (ESOPs): in a BDD for a Boolean function f , each path to
the 1-terminal corresponds to a (partial) assignment to the variables, i.e. to
a product of the literals of f . The products derived from different paths are
disjoint. Collecting them in a sum yields a DSOP. Another field of application
is Boolean satisfiability (SAT): the number of paths in BDDs is related to
the number of backtracks of a SAT-solving procedure [22]. Optimization can
support concepts to integrate SAT and BDDs. The optimization with respect to
the Expected Path Length (EPL) has e.g. been studied in [20, 12]. It is motivated
by the reduction of the time needed to evaluate many test vectors with a BDD
in functional simulation, e.g. [19, 18]. Minimization of EPL as well as of the
Maximal Path Length (MPL) in BDDs is also motivated by logic synthesis:
first, every variable missing in a path of the BDD corresponds to a don’t care.
Thus shortening the EPL can help providing don’t care values for minimization.
Second, the longest path in the BDD corresponds to the critical path in a
derived circuit. Hence minimization with respect to MPL/EPL is expected to
support synthesis approaches targeting the delay of the resulting circuits. The
minimization of MPL has been studied in [12, 21].

To evaluate the quality of heuristic results, again a comparison with ex-
act solutions is of great help. In this paper a new exact EPL minimization
algorithm is given and the computational hardness of the remaining exact opti-
mization problems is analyzed. For that purpose a known approach to sequenc-
ing optimization problems [2, 3, 16] based on Dynamic Programming (DP) is
generalized. This is done by replacing the previously used sufficient condition
by a weaker sufficient and necessary condition. In this sense, a least restric-
tive framework is obtained. Next, this framework is used as a formal tool to
analyze the given problems. The problems of exact BDD node minimization
as well as of EPL-minimization can be solved with DP-based approaches for
Branch&Bound (B&B) derived by this framework. However, the problems of
minimizing the number of paths in BDDs and of MPL-minimization can not be
solved even with the new conditions. A prime reason for this can be identified,
the violation of Bellmann’s principle [1].

Experiments show that, apart from a few exceptions, the results of a recent
heuristic approach to minimize the EPL in BDDs [12] are of the same quality
as exact solutions.

2 Preliminaries

In this section, basic notations and definitions are given.
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(a) An α-minimal ordering (see
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Fig. 1. Two BDDs for f1 = x1 · x2 + x1 · x3 and f2 = x1 · x2 + x2 · x4.

2.1 BDDs

Reduced ordered Binary Decision Diagrams (BDDs) are directed acyclic graphs
(DAGs) where a Shannon decomposition

f = xifxi + xifxi
(1 ≤ i ≤ n)

is carried out with each node. Nodes v are labeled with variables in Xn =
{x1, . . . , xn} (denoted by var(v)), edges are 1- or 0-edges, leading to one of the
two child nodes denoted then(v) and else(v). The variables are bound to values
in B := {0, 1}. They are encountered at most once and in the same order,
the “variable ordering” denoted π, on every path from the root to one of the
two terminal nodes 1 and 0. For this reason the nodes can be partitioned into
n levels, each of which contains the nodes labeled with one particular variable.
If this is the first variable in the ordering, the level is called the first level, etc.
For 1 ≤ k ≤ n, the level is called the kth level if the variable is π[k]. Formally,
variable orderings map level numbers to variables. The set of all orderings is
denoted Π. For a BDD F , a prefix π, i.e. πF , expresses that F respects the
ordering π. The term nodes(F, xi) denotes the set of nodes labeled with xi (the
“xi-level” of F ) and label(F, xi) abbreviates |nodes(F, xi)|.

Note that reduced diagrams are considered, derived by removing redundant
nodes and merging isomorphic subgraphs. In the following we assume shared
BDDs with Complement Edges (CEs) [5] without mentioning it further (and
without using CEs in the illustrations). Note that all results reported here
directly transfer to BDDs without CEs. For examples of shared BDDs, see
Fig. 1 (for now, the additional annotations can be disregarded, they will become
important in Section 7), for more details see [6].

For a BDD F over Xn representing a Boolean function F , let c(F, k) denote
the set of nodes in levels below the kth level of F (including the terminal
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nodes) that are either externally referenced (i.e. they represent user functions)
or referenced directly from the nodes in levels 1, . . . , k of F . The set c(F, 0) is
equal to the set of externally referenced nodes (output nodes) in F . We will
also need the notation k(F, k) = c(F, k) \ {1,0}. By the definition of c, every
path starting at an output node and ending at a terminal node must traverse
a node in c(F, k). This property can be used to derive formulas that describe
path related objective functions, as is seen later in Section 5.

The nodes in c(F, k) represent the cofactors of f in the first k variables of
the ordering F respects. To denote sets of cofactors of f with respect to a set
of variables X ⊆ Xn, we use the notation cof(f,X).

2.2 Path-Related Objective Functions

Paths in a BDD start at a root node and end at a terminal node. The length of
a path is the number of inner nodes on the path. Next, path-related objective
functions are defined: the EPL of a BDD expresses the expected number of
variable tests needed to evaluate an input assignment along a path from an
output node to a terminal node. This number is determined as the average
path length under all such input assignments. For a BDD F it is denoted ε(F ).
For a BDD node v, ε(v) is the EPL of the sub-BDD rooted at v. In case of a
single-rooted BDD F , the EPL is simply the ε-value of the root node, otherwise
it is the average of the weighted1 ε-values for all output nodes. In [7], the
term Average Path Length (APL) of a BDD is used for the unweighted sum
of the EPLs of the single-rooted component BDDs forming the multi-output
BDD. Further, let ωε(v) denote the probability that an evaluation of input
assignments which starts at an output node traverses v. Other path-related
objective functions for BDDs are the number of paths and the maximal path
length: let α(v) denote the number of paths from v to a terminal node, and
let α(F ) denote the number of paths from an output node to a terminal node,
respectively. Let μ(v) denote the maximal length of a path from v to a terminal
node, and let μ(F ) denote the maximal length of a path from an output node
to a terminal node, respectively. For a node v, let ωα(v) denote the number of
paths from an output node to v and let ωμ(v) denote the maximal length of
a path from an output node to v, respectively. Further, μ via(v) denotes the
maximal length of a path via v.

2.3 Miscellaneous

For the sake of completeness, the classical objective function BDD size will
also be denoted by a Greek letter, namely ν. Sequences s are denoted using
brackets, e.g. s = 〈e1, . . . , ek〉. By s ◦ e we denote the concatenation of s with
e to 〈e1, . . . , ek, e〉. Further, let last: IRn → IR; last(x1, . . . , xn) = xn for all
x1, . . . , xn ∈ IR.

1 The weight equals the number of external references to the output node.

302 Rüdiger Ebendt and Rolf Drechsler



We also make use of the following notations: let I ⊆ Xn. Throughout the
paper, Π(I) denotes the set of all orderings whose first |I| positions constitute
I. Let cost: {F | F is a BDD}× 2Xn → IR be a cost function on BDDs, e.g. for
BDD size, cost(F, I) denotes the number of nodes in F labeled with a variable
in I and it is cost(F,Xn) = |F |. If cost(F,Xn) = κ(F ) for an objective function
κ, we have a cost function for κ. Then

min costI = min
π∈Π(I)

cost(πF, I)

denotes the minimal cost under all orderings in Π(I). In the case of a cost
function for κ, we call the ordering π leading to this minimum a κ-minimal
ordering for I. We write ΠI for the set of all κ-minimal orderings for I. Note
that min costXn = minπ∈Π κ(πF ).

3 Previous Work

To keep the paper self-contained, we briefly review previous work related to our
studies. Our analysis is founded on results from two fields of research: the first
field is sequencing optimization by DP, the second is BDD optimization. This
paper presents research in the intersection of both fields.

3.1 Sequencing Optimization

Aiming at exact optimization with reasonable run times, it is mandatory to keep
the size of the search space within sane limits: an exhaustive search essentially
would compare every single input datum to every other input datum to find
the solution. Hence, an exhaustive search requires n! operations on the data.
More mature methods manage to reduce the size of the search space to one of
only 2n states. Moreover, this space can often be pruned by B&B. Following
this general outline, the framework for exact BDD minimization [15] was based
on a more general approach to solve sequencing optimization problems [3, 16].
It makes use of Bellmann’s principle [1]:

If the (total) sequence e1, . . . , ek, . . . , en via ek is optimal then
the sub-sequence e1, . . . , ek must be optimal. Moreover, op-
timality of the overall sequence is preserved if the optimal
sub-sequence is replaced by another optimal sub-sequence over
e1, . . . , ek.

(1)

Sometimes it is useful to define the optimality of a sequence over {e1, . . . , ek}
as the cost minimality under all sequences over {e1, . . . , ek} that respect some
condition, e.g. the condition of ending with the last element ek. E.g., it is clear
that when computing the shortest path between two nodes in a finite DAG,
optimal sub-paths ending at some intermediate node must be part of a shortest
path via the intermediate node.
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This principle makes it possible to base the computation of optimal solu-
tions on that of optimal partial solutions. Once partial solutions have been
calculated, they may be reused several times during the algorithm, i.e. mem-
oization can be used. A programming paradigm that is based on Bellmann’s
principle and memoization is Dynamic Programming [1]. In [3, 16], n-element
sequencing problems were solved with DP-approaches that make use of recur-
rent equations for the partial solution costs. These are derived by repeatedly
applying (1) to m-element starting sequences (1 ≤ m ≤ n) with a fixed last
element (an example will be given at the end of the section).

The tackled problems all respected the following condition:

For all k = 1, . . . , n:

– Let cost(e1, . . . , ek) =
∑k

i=1
cost(ei).

– Let cost(ek) depend only on what elements are preceding
ek (i.e. be independent of their order).

(2)

This is a sufficient condition for the validity of (1): cost(ek) is invariant un-
der all orderings for e1, . . . , ek. Hence, cost(e1, . . . , ek−1) must be minimal iff
cost(e1, . . . , ek) = cost(e1, . . . , ek−1) + cost(ek) is minimal. Hence, Bellmann’s
principle holds, and it is not necessary to construct all of the n! orders for the
n elements of the sequence.

In the following, this framework will be referred to as the framework of
Bellmann/Held/Karp. Next, as an illustrating example, it is described how this
idea has been used by Friedman and Supowit for exact node minimization [15].
In brief, the optimal variable ordering is computed iteratively by computing for
increasing k’s min costI for each k-element subset I of Xn, until k = n: then,
the BDD has a variable ordering yielding a BDD size of min costXn . This is
an optimal variable ordering.

This is done by a gradual schema of continuous minimum updates.
Let F be a BDD. Before the first step of the schema, I = ∅. Considering step

k, let I ⊆ Xn be a state which has been generated in the previous (i.e. (k−1)th)
step. I ′ is a successor state of I, generated in the kth step by transitions I −→
I ∪ {xi} =: I ′ (xi ∈ Xn \ I).2 The minimal cost and the best sequence for I ′ is
computed using the following reccurrent equation [15].

min costI′ = min
xi∈I′

[
min costI′\{xi} + label(πiF, xi)

]
(3)

where πi is a variable ordering contained in Π(I ′ \{xi}) such that πi(|I ′|) = xi.
The starting value is min cost∅ = 0.

This recurrence is based on the principle expressed in (1). The optimal order
for an |I ′|-element sub-sequence of variables is determined by minimizing over
all possible last variables xi. By (1), for every such variable the optimal sub-
sequence of the first (|I ′|−1) variables must be part of the optimal sub-sequence
2 The notation . . . =: I ′ is used for convenience. It has the same semantics as I ′ := . . .

which is that of a defining assignment.
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for all |I ′| elements ending with xi (since “ending with xi” is just a special case
of “via” as stated in (1)). In essence, (1) holds as a direct consequence of the
following: the term label(πiF, xi) only depends on which variables occur before
xi in the ordering. This has been shown in [15] and is a sufficient condition
following (2).

The state space considered here is 2Xn which is of a size growing much slower
with n than n!. By the use of B&B with lower and upper bounds on BDD size,
it can be further reduced [9, 11]. But also recent approaches like the A∗-based
approach in [13] still depend on the use of such a smart state encoding.

3.2 BDD Optimization

Section 1 already gave an overview of work in this field. Our approach in part
is founded on the following previous results [12], [17].

Theorem 1. Let F be a BDD representing a Boolean function f and let v be
a node in F . Fixed probabilities are assumed for the variable assignments to
values in B. The term ωε(v) is invariant with respect to variable ordering iff a)
the function represented by v and b) the number of the v-level are preserved.

Theorem 2. Let F be a BDD with the underlying DAG (V,E). Then

ε(F ) =
∑

v∈V \{1,0}
ωε(v). (4)

4 Generalized Cost Function for Path-Related Objective
Functions

Let a function acc map series with at most n elements to IR and let it respect
the following condition:

acc(c1, . . . , ck) = acc(acc(c1, . . . , ck−1), ck) (1 ≤ k ≤ n)

Then, for I ⊆ Xn, a general form of a cost function that is appropriate for a
recursion schema is:

cost(πF, I) = acc(c1, . . . , c|I|) where

ck =
⊙

v∈Cut(πF,k)

C(v) (1 ≤ k ≤ |I|)

Since a cost function can be uniquely determined by the choices of acc,�,Cut,
and C, it is convenient to give cost functions by tuples (acc,�,Cut, C),
e.g. cost size = (

∑
,
∑

,nodes, 1). For all nodes v, the contribution is 1(v) = 1.
By this, in the kth summand of acc, only the nodes in the kth level are counted,
respectively. Depending on the choice of acc and �, more complex cost functions
can be expressed.
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5 Sufficient Condition for DP-based Exact Minimization

All path-related BDD optimization problems are special sequencing problems.
This raises the question whether DP-based B&B optimization methods using
the framework of Bellmann/Held/Karp outlined in Section 3 can be found.
Assuming this framework could be used, an approach following the framework
would be promising since a B&B method for node minimization already is
known (see Section 3). For this reason it is investigated whether the sufficient
condition (2) holds for the remaining path-related objective functions ε, α, and
μ. In the course of the analysis, a new exact method for exact minimization of
the EPL in BDDs is derived from this framework.

Expected Path Length. First, the objective function ε is considered. By The-
orem 1 the following result can be deduced straightforwardly.

Lemma 1. Let F be a BDD representing f , I ⊆ Xn, k = |I|, and xi ∈ I. Then
there exists a constant c such that

∑

v∈nodes(πF,xi)
ωε(v) = c for each π ∈ Π(I)

with π(k) = xi.

Consequently, (2) is respected and (1) holds. Let F be a BDD. Analogously to
(3) we can derive the recurrence

min costI′ = min
xi∈I′

⎡

⎣min costI′\{xi} +
∑

v∈nodes(πiF,xi)

ωε(v)

⎤

⎦ (5)

where πi is a variable ordering contained in Π(I ′ \{xi}) such that πi(|I ′|) = xi.
The starting value again is min cost∅ = 0. By (4), min costXn = minπ∈Π ε(πF ).
Using (5), for increasing k’s, a DP-approach can compute min costI for each
k-element subset I of Xn, until k = n. This yields a BDD of minimal ε-value.
In Section 7, pseudo-code for the derived DP-approach will be given and it will
be discussed in more detail.

Other Path-Related Objective Functions. Next, the use of the framework of
Bellmann/Held/Karp is discussed for the other path-related objective functions.
It is clarified that the sufficient condition (2) is not respected by the objective
functions κ ∈ {α, μ}, regardless of which of the cost functions for κ known
today are used.

Let F be a BDD with an underlying DAG G = (V,E). Cost functions are
based on equations describing the contribution of a single node v to α(F ) or
μ(F ). We give the following equations describing this interrelation: let 0 ≤ k ≤
n. For α, it is

α(F ) =
∑

v∈c(F,k)

α(v) · ωα(v), (6)

α(F ) =
∑

v∈c(F,n)

ωα(v). (7)
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μ(F ) = max
v∈V

μ via(v), or, more specific, (8)

μ(F ) = max
v∈c(F,k)

μ via(v), (9)

and

μ(F ) = max
v∈c(F,n)

ωμ(v). (10)

For 1 ≤ k ≤ n every path from an output node to a terminal node must traverse
a node in c(F, k). Hence, e.g. in (6) the number of paths in F can be calculated
by summing up the number of paths via a node for nodes in c(F, k). For every
such node v, this number is the product of ingoing paths multiplied with the
number of outgoing paths. Altogether we have cost(v) = C(v) = α(v) · ωα(v)
for v ∈ c(F, k) and C(v) is zero for v /∈ c(F, k).

By analogous arguments it is straightforward to see that (7)-(10) hold. The
more general equations are (9) and (6). At present, no other equations describing
node contributions for the considered objective functions are known.

Theorem 3. The sufficient condition of the DP-approach of Bellmann, Held,
and Karp does not hold for any of the known cost functions for α (number of
paths in a BDD) and μ (maximal path length in a BDD). Hence, this approach
to exact minimization can not be applied here, regardless of which of the known
cost functions is used.

However, this alone does not give strong evidence that sound DP-approaches
would not exist in general: condition (2) is a sufficient but not a necessary con-
dition for the validity of Bellmann’s principle. Other sufficient conditions might
exist which guarantee that Bellmann’s principle is respected. In the next sec-
tion, a sufficient and necessary, i.e. least restrictive condition and the resulting
generalized framework is introduced.

6 Generalized Dynamic Programming Framework

In this section the following question is addressed: regarding (feasible) ap-
proaches based on DP and Bellmann’s principle, can the two problems of min-
imizing κ ∈ {α, μ} be solved? To ease the analysis, the framework of Bell-
mann/Held/Karp is generalized in this section. The sufficient condition of the
previous framework is replaced by a sufficient and necessary condition for the
validity of Bellmann’s principle. In this sense, the presented approach is least
restrictive. The new condition is operational in that it can be used to check
whether a DP procedure can be easily derived for a given minimization prob-
lem. In the next section, this generalized framework will be used to show that
Bellmann’s principle is violated for the two problems, regardless of which of the
known cost functions for the objectives are used. This means that even with
the new condition no feasible exact algorithm can be derived for α and μ.
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Next, a necessary and sufficient condition is formulated which in fact is
equivalent to the principle of Bellmann (1) itself. In the new condition, the
assumptions of (2) that

– the cost of the sequences is accumulated by summation
– cost(ek) be fixed with respect to the ordering of the sub-sequence e1, . . . , ek−1

are dropped and hence the condition is less restrictive. The resulting gener-
alized framework is least restrictive in the sense that it is directly based on
this principle itself. This contrasts to the framework of Bellmann/Held/Karp
which can only be applied if a condition which is more restrictive than Bell-
mann’s principle holds for the considered optimization problem. An advantage
of the following new condition in comparison to (1) is the increased operational-
ity, i.e. it is easier to detect whether a given sequencing problem respects the
condition or not.

Theorem 4.

Let s1, s2 be two sequences (orders) of the elements in
{e1, . . . , ek−1} and let s1 be an optimal sequence. Let cost(s)

denote the cost of a sequence s. Iff both

cost(s1) = cost(s2) ⇒ cost(s1 ◦ ek) = cost(s2 ◦ ek) (11)
cost(s1) < cost(s2) ⇒ cost(s1 ◦ ek) < cost(s2 ◦ ek). (12)

hold, Bellmann’s principle as stated in (1) is respected.

Next, the recursive schema of the generalized framework for the exact BDD
minimization with respect to path-related objective functions is given, together
with sufficient and necessary conditions following (11) and (12). Thereby, we
focus on the problem of BDD optimization, giving the schema for BDDs right
away. However, note that it is straightforward to transfer the idea to (any) other
sequencing problem. For a better understanding of the next theorem notice
that the general flow of the schema is similar to the one already given in (3).
Condition 1) of the following theorem states that the node contributions must
not depend on the order of variables which are situated at levels k > |I ′|. This
is because otherwise the recurrence of the schema would not be well-defined
since it depended on future values. Although it might look a bit over-formal,
Condition 2) is just a straightforward “translation” of (11) and (12) into the
BDD context. When collecting the node contributions, the schema can choose
between two forms of a cut through the BDD as the general function Set is
used. As before, the correctness of the schema follows from Bellmann’s principle.

Theorem 5. Let κ be an objective function for BDDs and let F be a BDD.
Let xi ∈ I ′ ⊆ Xn. Let cost = (acc,�,Set, C) be a cost function for κ, where
Set is a function identifier in {nodes, c}. Further, let π∗

i ∈ ΠI′\{xi} such that
π∗

i (|I ′|) = xi.
Assume that the following conditions are respected:
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1)For v ∈ Set(π∗
i F, |I ′|), C(v) does not depend on the last n− |I ′| positions in

π∗
i .

2)Let I1, I2 ⊆ Xn, xj /∈ I1, I2 = I1 ∪ {xj}, π1, π2 ∈ Π(I1) where π1(|I2|) =
π2(|I2|) = xj, and let π1 be κ-minimal for |I1|.
For shorter notation,

coll1(π1F, |I2|) :=
⊙

v∈Set(π1F,|I2|)
C(v) and

coll2(π2F, |I2|) :=
⊙

v∈Set(π2F,|I2|)
C(v).

It must be

cost(π1F, I1) = cost(π2F, I1)
⇒ acc(cost(π1F, I1), coll1(π1F, |I2|)) = acc(cost(π2F, I1), coll2(π2F, |I2|)),

cost(π1F, I1) < cost(π2F, I1)
⇒ acc(cost(π1F, I1), coll1(π1F, |I2|)) < acc(cost(π2F, I1), coll2(π2F, |I2|)).

Further, let min cost∅ = cost(F, ∅). Then the following recurrent equation for
min cost

min costI′ = min
xi∈I′

⎡

⎢
⎣acc(min costI′\{xi},

⊙

v∈Set(π∗
i
F,|I′|)

C(v))

⎤

⎥
⎦

holds and we have

min costXn = min
π∈Π

κ(πF ).

Further, a DP-method to compute min costXn exists. It is operating on the state
space 2Xn .

7 Hard and Feasible Instances of Path-Related
Optimization

In the following, the DP schema derived in the previous section is applied to
various problems of exact BDD minimization. First the two objective functions
α and μ are considered and it is shown that, even with the least restrictive
schema, no feasible exact algorithm can be derived for minimization of the
number of paths and of MPL. This limits the hope to find a smarter encoding
of the original (naive) search space of size O(n!). However, such encodings are
strongly desired since they break down the state space to one of a size of O(2n).
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In the past state spaces of this size have been successfully handled for problem
instances of moderate size by a number of intelligent pruning techniques, based
on paradigms like DP, B&B, and A∗ [9, 11, 13].

Then it is shown that feasible DP-based approaches can be derived from
the framework for the remaining two problems, exact node minimization and
minimization of the EPL in BDDs. Moreover, the DP-based schemas are ex-
tended to B&B approaches. This is the first time that a feasible exact method
for minimization of the EPL in BDDs is presented.

Theorem 6. The conditions of Theorem 5 do not hold for any of the known
cost functions for α (number of paths in a BDD) and μ (maximal path length in
a BDD). Hence, Bellmann’s principle is violated and the approach of Theorem
5 can not be applied here, regardless of which of the known cost functions is
used.

Proof. See the Appendix.

As we concentrate on practical algorithms based on a DP formulation,
e.g. B&B or A∗, this result does not strictly imply the inexistence of expo-
nential time algorithms for Alpha and Mu. In the remainder of the section it is
shown that the schema can be applied successfully to the objective functions ν
and ε.

Theorem 7. DP-methods to minimize the objective functions ν (number of
nodes in a BDD) and ε (expected path length in a BDD) exist. They operate on
the state space 2Xn which can be further pruned by B&B.

Proof. See the Appendix.

8 Experimental Results

In this section, experimental results are presented. All algorithms have been ap-
plied to circuits of the LGSynth93 benchmark set [8]. The tested methods target
the two objective functions that allow a DP-based B&B-approach following the
framework presented in this paper. This includes the exact B&B method for
EPL minimization outlined in Section 7 after Theorem 73 (called εXact) as
well as the approach to EPL-sifting described in [12]. For a comparison in run
time and since we were also interested in the EPL of BDDs which have been
minimized with respect to the number of nodes, also the best B&B method for
exact node minimization called JANUS [11] has been applied.

To put up a testing environment, all algorithms have been integrated into
the CUDD package [24]. By this it is guaranteed that they run in the same
3 Instead of (15) only min costI has been used as a lower bound since otherwise the

extra effort of computing the lower bound exceeded the gain in run time for all but
the smallest benchmark functions.
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system environment. A system with an Athlon processor running at 2.2 GHz,
with a main memory of 512 MByte and a run time limit of 36,000 CPU seconds
has been used for the experiments.

In a series of experiments, all methods have been applied to the benchmark
functions given in Table 1. In the first column the name of the function is given.
Column in (out) gives the number of inputs (outputs) of a function. The next
two columns time and space give the run time in CPU seconds and the space
requirement in MByte for the approach JANUS, respectively. The next column
opt. # shows the minimal numbers of nodes for a BDD representing the re-
spective function. Column ε gives the EPL for the respective BDD of minimum
size. In the next two columns the same quantities run time and space require-
ment are given for the method εXact, respectively. The next column opt. ε
gives the optimum ε-value for a BDD representing the respective benchmark
function. The next two columns show the run time and the space requirement
for the approach to EPL-sifting. The last column ε̂ gives the heuristic ε-value
as determined by EPL-sifting, respectively.

The results show that the run times of εXact are generally larger than
that of the exact node minimization method JANUS. There are two reasons for
that: the BDDs created in intermediate steps during operation of εXact can
be significantly larger than those in the size-driven method JANUS. Moreover,
εXact needs to maintain an additional node attribute (the ωε-value) with time-
consuming hash table accesses during variable swap operations.

Since the results of an exact approach to EPL-minimization are given, this
allows for the evaluation of the previous heuristic approach called EPL-sifting
which shows that it performs much faster (up to five orders of magnitude). Most
of the time it achieves almost optimal results. However, it can also be observed
that the results obtained by εXact show an improvement in the ε-value of
9.6% on average. In some cases (see comp, sct, cordic, t481, and vda) the gain
is significant and it can be more than 50% (see comp).

9 Conclusions

The exact optimization of BDDs with respect to path-related objective func-
tions has been investigated. First, formal results have been given which show
that these functions can be very sensitive to a chosen variable ordering. Sec-
ond, a generalization of the framework of Bellmann/Held/Karp yielded deeper
understanding of the reasons why it is hard to minimize BDDs with respect to
the number of paths or to the maximum path length.

On the other hand we successfully derived a new exact algorithm for the
expected path length in BDDs. It is a DP-based B&B method that can be
obtained by the general framework.

Experimental results showed the feasibility of the exact approach. For the
first time it became possible to evaluate a heuristic approach to EPL minimiza-
tion.
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Table 1. Results for expected path length

name in out JANUS εXact EPL-sifting
time space opt. # ε time space opt. ε time space ε̂

cc 21 20 81s 36M 46 2.08 939s 50M 1.78 0.03s <1M 1.78
cm150a 21 1 277s 37M 33 3.50 785s 23M 3.50 0.03s <1M 3.50
cm163a 16 5 0.9s <1M 26 2.34 4.5s <1M 2.34 0.03s <1M 2.34
cmb 16 4 0.3s <1M 28 2.00 0.2s <1M 2.00 0.03s <1M 2.00
comp 32 3 3287s 130M 95 17.33 9419s 108M 4.00 0.13s <1M 9.28
cordic 23 2 1.9s <1M 42 8.92 50s 2M 4.73 0.03s <1M 6.28
cps 24 102 2359s 61M 971 2.84 26335s 96M 2.31 0.10s <1M 2.31
i1 25 16 20s 10M 36 1.76 232s 23M 1.72 0.03s <1M 1.72
lal 26 19 450s 79M 67 2.73 10023s 310M 2.06 0.03s <1M 2.08
mux 21 1 278s 36M 33 3.50 786s 22M 3.50 0.03s <1M 3.50
pcle 19 9 5.2s 3M 42 3.00 169s 10M 2.50 0.03s <1M 2.50
pm1 16 13 0.6s <1M 40 2.16 1.6s <1M 1.74 0.03s <1M 1.75
s208.1 18 9 5.3s 2M 41 3.29 177s 10M 2.69 0.03s <1M 2.69
s298 17 20 8.7s 3M 74 2.14 59s 5M 2.10 0.03s <1M 2.10
s344 24 26 847s 111M 104 2.24 24872s 347M 2.22 0.03s <1M 2.22
s349 24 26 851s 111M 104 2.24 24932s 347M 2.22 0.03s <1M 2.22
s382 24 27 416s 75M 119 3.02 14831s 347M 2.15 0.04s <1M 2.16
s400 24 27 413s 75M 119 3.02 14793s 347M 2.15 0.03s <1M 2.16
s444 24 27 462s 82M 119 3.02 14637s 347M 2.15 0.04s <1M 2.19
s526 24 27 833s 111M 113 2.41 16755s 347M 2.21 0.04s <1M 2.21
s820 23 24 1080s 59M 220 2.60 9374s 93M 2.54 0.04s <1M 2.54
s832 23 24 1127s 59M 220 2.60 9660s 93M 2.54 0.04s <1M 2.55
sct 19 15 6s 3M 48 2.94 191s 10M 2.25 0.03s <1M 2.36
t481 16 1 0.4s <1M 21 9.00 4.5s <1M 8.25 0.03s <1M 9.00
tcon 17 16 0.6s <1M 25 1.50 25s 5M 1.50 0.03s <1M 1.50
ttt2 24 21 521s 82M 107 2.83 16189s 347M 2.55 0.03s <1M 2.55
vda 17 39 30s 3M 478 4.51 512s 6M 4.39 0.05s <1M 4.43

Appendix

Proof of Theorem 6.
Minimization of Number of Paths: The node contribution must be based on

the cost function in (7), as all other equations define node contributions which
depend on the lower part of the BDD (and thus this would violate Condition
1)). Consequently, the only choice for the cost function that respects Condition
1) is

cost = (last,
∑

, c, ωα)

First, clearly ωα(v) does not depend on the part of the ordering after the posi-
tion of var(v), thus Condition 1) is respected. Second, for a BDD πF , it is

cost(πF,Xn) = last(. . . ,
∑

v∈c(πF,n)

ωα(v))
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because of (7). We can choose an arbitrary value as the starting value of the
recursion because the accumulation function is the function last. This yields
the recurrence:

min costI′ = min
xi∈I′

⎡

⎣
∑

v∈c(π∗
i
F,|I′|)

ωα(v)

⎤

⎦ (13)

where π∗
i ∈ ΠI′\{xi} such that π∗

i (|I ′|) = xi is derived. Note that the equa-
tion is recurrent although no terms min costI′\{xi} do occur since π∗

i results
from previous steps. In particular notice that the first condition of the general
recursion schema already forces these choices.

Next the validity of the second condition is disproven by giving a counter-
example (see Fig. 1). It shows that Condition 2) may be violated.

In Fig. 1(a), the horizontal lines cut through the edges after the third and
the fourth level. The nodes of the set c(F, 3) are exactly the nodes with cut
edges pointing to them. The depicted ordering π1 = x1, x2, x3, x4 for a BDD
π1F is α-minimal for I = {x1, x2, x3}. This can be seen by inspecting all 3! = 6
possible permutations of I. We have costα(π1F, I) = 8. In Fig. 1(b), the ordering
π2 = x2, x1, x3, x4 for a BDD π2F representing the same function causes a cost
of 9 for I. Now let I ′ = {x1, x2, x3, x4}. It is costα(π1F, I ′) = costα(π2F, I ′) =
10, i.e. a suboptimal sub-ordering does not lead to higher “future” costs. This
violates the second implication of Condition 2).

Minimization of Maximal Path Length: The consideration is analogous to
that for the number of paths, essentially just

∑
is replaced by max and ωα is

replaced by ωμ.
Again a counter-example shows that Condition 2) may be violated (the other

condition again holds), see Fig. 2. In Fig. 2(a) the ordering π1 = x1, x2, x3 for a
BDD π1F is μ-minimal for I = {x1, x2}: since the function essentially depends
on x1, x2, at least one path going through two nodes, one labeled x1, the other
x2, must exist. This path is of minimal length 2. The ordering x2, x1, x3 in
Fig. 2(b) for a BDD π2F representing the same function also causes a cost for
I of 2. However, the cost for I = {x1, x2, x3} is 3, whereas it is only 2 in the
BDD π1F . This violates the first implication of Condition 2). 
�
Proof of Theorem 7.

The cost function for the number of nodes is cost = (
∑

,
∑

, nodes, 1) (see
Section 4), for the expected path length it is cost = (

∑
,
∑

, nodes, ωε). In both
cases the term min cost∅ = 0 is the starting value of the recursion and it is
trivial to show that Conditions 1) and 2) are respected. Hence e.g. min costXn =
minπ∈Π |πF |.

By that, essentially the same schemas as in (3) and (5) are obtained (with
the minor specialization that πi is chosen as π∗

i ). Both DP-approaches can be
turned into B&B methods by the use of lower bounds. In [9], the lower bound
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Fig. 2. Two BDDs for f = x1 · x2 + x1 · x3.

l b = min costI + max{|k(F, |I|)| , n − |I|} + 1 (14)

has been proposed. The idea of (14) also directly transfers to EPL-minimization.
Here, it is possible to use the lower bound

l b = min costI +
∑

v∈k(F,|I|)
ωε(v). (15)

At the end of a step of the outlined DP-approach, all data for a state I for which
the lower bound exceeds or equals the current upper bound (which is updated
to the minimal BDD size seen so far with every intermediate BDD constructed),
can safely be excluded from further consideration. This is because any ordering
in Π(I) must yield BDD sizes (or sums of ωε-values) larger than the smallest
BDD (the smallest sum) encountered. 
�
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Abstract. This work addresses the leakage information problem concerning 
cryptographic circuits. Physical implementations of cryptographic algorithms 
may let escape some side channel information, like electromagnetic 
emanations, temperature, computing time, and power consumption. With this 
information, an attacker can retrieve the data that is being computed, like 
cryptographic keys. This paper proposes a novel method to thwart DPA 
attacks, based on power consumption control. As main contribution, this 
approach not requires any modification on the cryptographic algorithm, the 
messages or keys. 

1 Introduction 

The main objective of cryptographic systems is to allow the communication 
between two agents, among an insecure channel, with privacy. To accomplish this 
task, modern cryptographic algorithms uses complex mathematical functions and 
large keys. In this context, “large” means a number sequence with a range between 
128 and 4096 bits. 

Cryptographic algorithms are commonly classified in two categories: symmetric 
and asymmetric. The symmetric ones use the same key to encrypt and to decrypt 
messages. That supposes a secure channel to accomplish the key exchange, but 
secret key based algorithms are very performing. On the other hand, asymmetric 
crypto algorithms uses a pair of keys, mathematically dependent, where one key 
remains secret, and the other must be published. This kind of algorithms can be used 
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to perform digital signatures and authentication schemes. However, public key 
algorithms are less performing that secret key ones. 

Actually, the two classes of algorithms are commonly combined. With a public 
key algorithm a secure channel can be established. First of all, the users have they 
origin ascertained with the authentication protocol. Then, they can exchange the 
symmetric algorithm’s secret key, by encrypting it with the asymmetric algorithm. 
So, the users can communicate on a secure channel.  

This idea can be applied to a cellular-to-cellular communication, to a web based 
video conference, and many other context. Among these, a very growing trend 
concerns embedded crypto system, like smartcards to ID or credit cards. For 
instance, in France, each credit card has a memory and a crypto processor. This 
secure device runs the RSA [1] (asymmetric) and the 3-DES2 [2] (symmetric) 
algorithms. Nowadays there is 45 million of this kind of credit cards, and in the next 
years, secure smartcards can become a European standard [3].  

RSA and AES are crypto algorithms that are proven as being mathematically 
robust under some conditions. However, the weaknesses of such algorithms are 
frequently based on implementation problems. Factors like bad random number 
generation and others can compromise the whole system security. Concerning 
hardware implementations, even a careful designer cannot avoid a specific class of 
cryptanalysis.  

The hardware devices implementing cryptographic algorithms (processors, ASIC, 
FPGA and others), may leak some information, like electromagnetic emanations, 
computing time and power consumption. By analyzing one or more of these 
information, an attacker can relate the leaked data with the device’s internal state, 
and so, with the secret key. This kind of attack is called Side Channel Attack (SCA). 

The SCA most famous is the Differential Power Analysis (DPA) [4]. The DPA 
attack is very efficient and relatively low cost. Power analysis principle is based on 
the current consumption to compute logical 0 (zeros) and logical 1 (ones), that is 
different for each case. Differential Power Analysis enables an intruder to extract 
secret keys and information from smartcards, which can be used to create fraudulent 
transactions, generate counterfeit digital cash or perform content piracy.  DPA 
eavesdrops on the fluctuating electrical power consumption of the microprocessors at 
the heart of these devices, and uses advanced statistical methods to extract 
cryptographic keys and other secrets. Although DPA attacks currently require a high 
level of technical skill in several fields to implement, they can be repeated using a 
few thousand dollars worth of standard equipment, and can often break a device in a 
few minutes.  

After a while, some efficient algorithmic countermeasures have been presented, 
but most of them rely on the modification at the algorithm level, to avoid the 
correlation between the power consumption, the message and key data. Our original 
approach simplifies this task by masking power consumption, without any 
algorithmic modification. 

This paper is organized as follows: Section 2 describes the DPA attack. Section 3 
shows previous and related works on DPA countermeasures. Section 4 presents the 
new method to avoid DPA attacks, and conclusions are discussed and future works 
shown in Section 5. 

 
2 In the next months, all credit cards will be substituted by others running the AES algorithm 
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2 DPA Attack 
 

DPA attacks use statistical techniques to determine secret keys from complex, 
noisy power consumption measurements [4]. For a typical attack, an adversary 
repeatedly samples the target device’s power consumption through each of several 
thousand cryptographic computations with the same key. These power traces can be 
collected using high-speed analogical-to-digital converters, using digital storage 
oscilloscopes. Figure 1 illustrates this method. 

Figure 1 - A DPA attack platform 
 
Because it’s widespread use, the DES algorithm is used to explain a DPA attack. 

DES executes in 16 steps, called rounds. In each round, a transformation F is 
performed on 32 bits. This F function uses eight non-linear transformations from 6 
bits to 4 bits. Each of such transformations is called S-Box. Figure 2  show the DES 
scheme. Initially the algorithm receives the key and performs a key division into sub 
keys (a). Then the plain text is transformed trough permutations and substitutions 
with the sub keys. The DES is composed by 16 rounds of substitutions (b), where the 
most important elements are the substitution boxes (S-Box). The DPA attack is 
performed targeting only one S-Box. 

First, it is needed to make some measures (1000 samples, for instance) from the 
first (or the last) round of DES computation. After that the 1000 curves are stocked, 
and an average curve (AC) is calculated.    

Secondly, the first output bit (b) of the attacked S-box is observed. This b bit 
depends only of the 6 bits from the secret key. Then, the attacker can make an 
hypothesis on the involved bits. He computes the expected values for b; this enables 
to separate the 1000 inputs into two categories: those giving b=0 and those giving 
b=1. 
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Thirdly, the attacker computes the average curve AC’ corresponding to inputs of 
the first category. If AC’ and AC have a difference much greater than the standard 
deviation of the measured noise), it means that the chosen values for the 6 key bits 
are correct. But, if AC’ and AC do not show any visible difference, the second step 
must be repeated with another hypothesis for the 6 key bits. 

Figure 2 - The DES Algorithm (a), with the round details (b), and emphasizing the 
importance of the S-Boxes (c). 

 
Afterwards, the second and third steps must be repeated with a target bit b in the 

second S-box, then in the third, and so on, until the eight S-Box. As a result, the 
attacker can obtain the 48 bits of the secret key. Finally, the remaining 8 bits can be 
retrieved by exhaustive search.  

More details of DPA attacks against DES can be found in the reference [6]. 
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3 Related works 
 

The countermeasures that have been developed against DPA attacks until now 
can be classified in two families. The first group is composed by the algorithmic 
countermeasures. The basic idea from references [5], [6], [7] and [8] is to randomize 
the intermediate results that are produced during the computation of a cryptographic 
algorithm. Classical DPA attacks can be impracticable if these countermeasures are 
well implemented. But these randomizations are quite expensive to implement for 
non-linear operations as they are used in algorithms like DES and AES. Furthermore, 
the algorithmic approach does not provide sufficient protection against high-order 
DPA attacks [19]. As consequence, this kind of method needs complementary 
hardware countermeasures. The next subsections shows some algorithmic and 
hardware countermeasures. 

3.1 Algorithmic Countermeasures 

There are several algorithmic (or software) countermeasures to thwart DPA 
attacks. Some of the first ones were proposed in [20], and the three proposed 
countermeasures are efficient against SPA and classical DPA attacks. For RSA 
cryptosystems the first method described by Coron is applicable, and the second one 
is just an adaptation of the Chaum’s blind signature [21]. The third method is only 
suitable for ECC (Elliptic Curve Cryptosystems). But the recently proposed Refined 
Power Analysis (RPA) [22] overrules these countermeasures.   

The BRIP method counteracts the RPA but is also targeted to ECC, not tailored 
to work with the widely used RSA algorithm [23].  The message blinding proposed 
by P. Kocher [24] seems to be an efficient countermeasure against the MRED [25] 
(an attack targeting CRT implementation of RSA). 

In general, the countermeasures protecting the RSA algorithm of DPA attacks 
relies on message or exponent blinding. These methods contribute or not to the 
security of the system, depending on the way they are implemented and the kind of 
attack. Is not rare that defense against one attack may benefit another type of attack.  

So, the best way to counteract DPA attacks is to target the DPA principle: the 
correlation between the data computed and the power consumption. Differently of 
the works that generally proposes CRT to accelerate RSA, like [26], another 
approach proposes a full RNS representation to compute RSA [27], [28]. Besides the 
acceleration, a full RNS implementation of RSA can intelligently be used to 
counteract DPA and DFA attacks, by altering the intermediate data through an exotic 
arithmetic. The problem with these approaches is that they require a full changing on 
the cryptographic algorithm to adapt it to the new arithmetic. 

3.2 Hardware Countermeasures 

The hardware method to counteract DPA attacks differs expressively from the 
algorithmic one. For the hardware approach the intermediate results of the 
cryptographic algorithm computation are not affected. As an alternative, the 
contribution of the hardware approach is to hide the attackable part of the power 
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consumption with different noises. The noise addition has a direct relation with the 
needs of measurement. It does not avoid DPA attacks, but makes it quite more 
difficult. The effectiveness of the countermeasures against DPA is due to the fact 
that cryptographic devices are typically protected by a combination of algorithmic 
and hardware techniques, or only the hardware one [9]. 

In order to decrease the correlation between data inputs and the power 
consumption of a given circuit, we must be able to increase the samples needed in 
DPA. Two major hardware countermeasures in this sense have been proposed. The 
first one concerns the reduction of the signal-to-noise ratio (SNR). For definition of 
SNR we call Ic the current consumption of the attacked circuit at a given moment t. 
In is the current noise caused by the hardware countermeasure. So, the current 
consumption can be written as Itotal =  Ic + In. The k variable is the signal attenuation 
caused by the In current. The SNR definition is given by Equation (1). 
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Lower SNR is lower the correlation between the correct hypothetical current 
consumption and the real power consumption of the device. To reduce SNR there are 
some works that use special logic to minimize the data dependency of the current 
consumption.    

In the references [10] and [11] the balanced dual-rail logic is proposed. The basic 
idea is that a logic gate must consume an equivalent power, independently from the 
incoming input values. The SNR is reduced by this data-independent switching of 
the standard cells. Unfortunately, the experiments show that this goal is only 
partially reached. Dual-rail approach is not sufficient to guarantee a complete data 
independent power signature. One potential problem is that the gate loads may differ 
due to differences in routing. The design of each dual-rail gate must ensure equal 
input pin loads and balanced power usage. To achieve this, the process of grouping 
cells in the placement must be done carefully, which implies a high development 
effort. Besides that, the final circuit with dual-rail logic takes about tree times the 
area and two times the consumption of the original circuit.  

The second hardware approach to prevent DPA attacks is to reduce the 
correlation between input data and power consumption by randomly disarrange the 
moment of time at which the attacked intermediate result is computed. If the time tc 
is different in every power trace, the correlation between the hypothetical power 
consumption and the real one is highly reduced. The countermeasure proposed by 
[12] lies on the insertion of random delays. The method described in [9] counteracts 
the DPA by using power-managed blocks to mask the power consumption. Both 
approaches [13] and [14] increase the difficulty the DPA attack. But, as shown in 
[15], even if a direct calculation of the maximum probability of a given power 
consumption occurring at a given time is not practical, it is always possible to 
approximate it empirically based on a software model of the countermeasure. 

This work gives a trend to mask the power consumption not by randomizing the 
consumption or creating noise but by generating, at the transistor level, a constant 
consumption. It is a little similar with the work proposed by Adi Shamir in [17], 
concerning the approach’s level of abstraction. But the circuit described in [17] 
considers only if the attacker probes the Vcc, because the Gnd line remains 
vulnerable. Also, the two capacitors proposed are too big to be integrated (100nF) or 
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a System in Package approach should be considered [18]. As explained in next 
session, our circuit masks the consumption even if the attack occurs in the Vcc or in 
the Gnd lines. 
 
 4. Current Mask Generation technique 

 
Based on the decreasing Signal to Noise Ratio idea, we conceived an analogical 

circuit able to mask the real power consumption from a cryptographic circuit. The 
main goal of this approach is to increase the security of the crypto devices without 
any modification of the cryptographic algorithm implemented. In addition, no special 
standard cells are required, unlike the dual-rail approach. 

Our technique tries to mask the power consumption by normalizing the current 
consumed by the cryptographic circuit (CC). This task is accomplished by an 
analogical circuit called Current Mask Generator (CMG), which’s role is to maintain 
the total current constant (from an external view). To design the CMG, firstly some 
measures were made, in order to establish the CC’s peak of current consumption. 
Once this value detected, the objective is to remain at this peak, even if the CC’s 
consumption is lower than it. 

The CMG is composed basically of a high-swing current mirror, a follower 
circuit, and a small capacitance. As can be depicted from Figure 2, the CMG acts 
aside of the CC, this outlines that any change in the cryptographic circuit is required. 
Note that the CMG and the cryptographic circuit are not in the same scale. Actually, 
the CMG takes only 30% of a standard hardware implementation of the DES 
algorithm.  

Still in Figure 2, the current mirror acts imposing a fixed current (I2). I2 is given 
by the w coefficients from P1 and P0, as can be viewed in Equation (2) and is equals 
to the CC’s peak of current consumption. 
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The cryptographic circuit consumes a Ic current. When Ic = I2, it means that the 
CC consumes all current furnished, and the CMG must stand by. Otherwise, when 
the CC not requires all I2 current, then the circuit follower performs a feedback-loop 
to consume a current IL so that IL  = I2- Ic.  

In fact, the circuit follower plays as a voltage generator. The operational 
amplifier receives a tension from the mirror and compares it with a reference voltage 
(i.e. Vext). ). If the cryptographic circuit consumes an amount of current less than I2, 
the voltage at the operational amplifier (Op-Amp) input will be lower than the 
reference voltage. Then the output of the Op-Amp will send 0 to the P4 transistor. So, 
it will consume an IL current, that is the difference between I2 and Ic. When the CC 
consumes at the peak (i.e. Ic = I2), the Op-Amp sends a 1 to the P4, switching off the 
transistor, because it is no longer necessary to drain current. 

Finally, the 9,5pF capacitor’s function is to give some time to the feedback-loop 
react. Also, the capacitor smoothes the tension, what have a benefice effect to the 
consumption masking. 
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Figure 3 - The CMG circuit in detail 

 
To validate the CMG method, it is used a DES S-box, to play the role of CC. 

Then, the S-box was simulated to determine the current consumption worst case. The 
Figure 4 shows a consumption peak about 6mA. 

Many simulations were made for different data scenarios. As can be viewed in 
Figure 5, the CMG works efficiently, masking the CC current consumption, and 
making DPA attacks a very difficult task. The signal /R8/Plus is the current 
consumed by the CC and the signal /R4/Plus is the masked signal.  

The Figure 6 shows, from a top-down view, the current consumption that can be 
plotted from the external Vdd or Gnd, the current consumption of the cryptographic 
circuit, de data input called a1 and the data input called a0. Analyzing the 
consumption reported to data input, Figure 6 shows that even with a one or a zero, or 
two ones, or two zeros as entries, the consumption viewed at the attackers side 
remains the same. 

 

 
Figure 4 - The S-box current consumption 
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Figure 5 - CC's current consumption (R8 Plus) and the current provided by the CMG 

circuit (R4 Plus). 
 

 
Figure 6 - The current provided by the CMG circuit, the current consumed by the CC, 

and some data input 
 
To define the difficulty to make a DPA attack, some parameters must be 

considered. The first one is the Signal to Noise Ratio. Contrary to a normal 
multimedia application, were the designer search to increase the SNR, by decreasing 
the noise as much as possible, the CMG approach intends the opposing: decrease the 
signal. 
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Figures 5 and 6 show glitches on the masked signal /R4/Plus. If a zoom is done, 
the same pattern found in /R8/Plus is repeated in /R4/Plus. It signifies that the system 
is not perfect. But if the values of each signal are considered (see Figure 7), it is clear 
that the CMG attenuates the current by a factor k 20. 

This k factor is obtained by measuring the /R8/Plus signal’s difference between 
its peak and its minor value (still in Figure 7), which done a CCdelta. Then, the 
process is repeated for the /R8/Plus signal, obtaining a CMGdelta value. So,  
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To view the CMG attenuation, the Signal to Noise Ratio show in the Equation (1) 
must be expanded to Equation (4): 

                    (4) 

With the equation (4), and regarding Figure 8 for the given example, the current 
viewed by an attacker is smoothed by 25db. It means that the observed signal could 
be drowned into the noise (Figure 8 (b)). 

Figure 7 -The signal attenuation reached by the CMG  
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Figure 8 - Normal power consumption and noise (a) and the power consumption with the 

CMG, immersed into noise (b) 
 
 

5. Conclusion 
 
The presented work improves the robustness of cryptographic circuits against 

DPA attacks. In this paper we have proposed a low level solution, which has as 
major contribution the fact that no changes are needed into the cryptographic 
algorithm.  

Our approach is not only simple to implement, but is also cheap regarding the 
area overhead point of view. A classic DES circuit has about 16mm  of surface 
(synthesis with the AMS 0.35 technology), while the CMG has only 5mm , so the 
area overhead is only about 30%, which is an acceptable cost to increase robustness 
on cryptographic systems. 

Another cost of this approach is the increased power consumption.  But it 
remains interesting for applications like credit cards, set-top boxes, phone cards and 
others where the low-power for cryptographic applications is less essential. In 
banking operations, like cash transactions, the cryptographic operation is not used all 
the time and the whole user operation is not so time-consuming that justifies a low 
power approach. The most important in this case is the security. The poor Signal to 
Noise Ratio generated by the CMG circuit makes a DPA attack very difficult. 

On the other hand, as can be viewed in the figure 6, the attenuation could be 
improved. By modifying the feedback-loop and the current generator we may 
diminish the Signal to Noise Ratio. One approach is the inclusion of an inductor in 
series with the current mirror. In our last experiments, preliminary results show 
attenuation greater than the first version of the CMG, and the trend is that the use of 
this inductor may lead to the attenuation of electromagnetic emissions too. So the 
CMG could also improve resistance against electromagnetic analysis (EMA) attacks. 
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Abstract. New technologies present a widely range of challenges in the design 
of standard-cell libraries, layout generation and validation of macro-blocks. 
Thus, the development of new tools being able to deal with these challenges is 
mandatory. This work presents a transistor placement technique using genetic 
algorithm associated to analytical programming. The genetic algorithm is used 
to reduce the search space of possible solutions while analytical equations are 
used to find out the position of each transistor in the layout. 

1. Introduction 

The layout automation of standard-cells and macro-blocks improves the design 
time due to a rapidly synthesis and this enables the designer to deal with a great 
range of challenges emergent in new process technologies.  

New technologies challenges require additional functionalities as performance-
driven placement, antenna diode placement, area-efficient placement of substrate and 
well ties, performance-driven detailed routing and layout compaction with 
preference to critical nets [1]. These new challenges increase the complexity of the 
existing tools and demand the development of new algorithms and methods to be 
used in the layout automation.  

Lazzari, C., Anghel, L., Reis, R.A.L., 2007, in IFIP International Federation for Information Processing, 
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standard-cell and macro-block layouts by using a genetic algorithm integrated with a 
mathematical programming. The genetic algorithm provides the parameters used in 
transistor placement constraints and reduces the search space. These constraints are 
described in a mathematical language and treated by a nonlinear solver. The result is 
an optimal transistor placement solution given these placement parameters. 

Section 2 presents a brief description of state-of-the-art and previous works. The 
proposed technique is described in Section 3 and 4. The parameters used in the 
placement constraints are presented in Section 5. Section 6 presents the mathematical 
language used in the transistor placement. Some preliminary results are given in 
Section 7 and the paper concludes with Section 8. 

2. Related Work 

The synthesis of standard-cell and macro-block layouts has been widely 
explored. In [2, 3], the placement algorithms are broadly divided into two classes: 
Deterministic and Stochastic.  

Deterministic methods are basically divided in numerical methods and analytical 
methods. The forced-directed technique [4, 5] is an example of numerical method 
where elements are connected to springs. In this technique, forces are applied to 
springs targeting the placement of the elements. Analytical methods [2, 3, 6, 7] are 
based on mathematical programming techniques as linear programming (LP) and 
quadratic programming (QP). Thus, the placement problem is described in a 
mathematical language. Once the method is able to solve these equations, the result 
is the placement of each transistor in the layout. 

The main examples of stochastic methods are known as simulated annealing and 
genetic algorithms. The simulated annealing [8] is analogous to hardware annealing 
process. It basically involves perturbing independent variables by random values 
while the temperature controls the standard deviation used by the random number 
generator. Genetic algorithms [9] use basic principles of biology and emulates the 
natural process of evolution to find solutions to a problem.  

Despite the number of transistor placement algorithms proposed in the literature, 
many of them do not offer a good compromise between the quality of results and the 
model complexity. The proposed approach achieves to obtain good quality layouts 
by using genetic algorithms associated to the analytical programming. 

 
 

3. The Transistor Placement Technique 

Some design problems as transistor placement have a large range of possible 
solutions. These problems are computational hard or even impossible to be solved. 
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 For some of them, methods as simulated annealing and the genetic algorithm can be 
used to reduce the search space.  

In the genetic algorithm, each solution is represented by a chromosome. A 
chromosome is usually composed by a binary vector where the variables formed by 
one or more bits are described. A population of chromosomes (possible solutions) is 
then created and genetic operators as mutation and crossover are applied in order to 
evolve the solutions to better results.  

The approach presented in this work is basically divided in three phases. First, a 
classical genetic algorithm is used to generate some parameters concerning transistor 
orientation and the relationship between them. These parameters are used as 
placement constraints described in an algebraic modeling language. The second 
phase consists on solving the placement constraints by a nonlinear solver in order to 
find the optimal solution according to the given constraints. After that, the best 
solutions are propagated and genetic operators are applied to the solutions.  

The pseudo code of the proposed approach is presented in Figure 1. An initial set 
of solutions is generated in the function generatePopulation(N) where each 
chromosome in the population P has a set of constraints about the transistor 

 
 

 
P = generatePopulation( N ); 
do N times { 
   foreach k in P { 
      solveConstraints( k ); 
      calculateFitness( k ); 
   } 
   P = doEvolution( P ); 

      } 

Figure 1. The proposed approach 

In function solveConstraints(k), the parameters of the chromosome k are 
converted to an algebraic modeling language and the placement problem is solved.  

The fitness of a is generated in the function 

The function doEvolution(P) is basically the reproduction of the 
chromosomes in the population P to generate a new population with better results. In 
the generation of this new population, operations of elitism, mutation and crossover 
are applied to the chromosomes in order to propagate the best solutions and to evolve 
the other chromosomes. 
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placement problem. The generation of this initial population is explained in Section 4.

chromosome calculate-
Fitness(k). The fitness of a chromosome is calculated based on the objective
function as described in Section 6.  



4. Initial Population Generation 

The range of possible solutions in the process of the layout generation is related 
to the number of elements in a cell or in a macro-block. Moreover, the relation 
between these elements makes a solution better than the others. Thus, some 
techniques can be used to reduce the number of elements and consequently, 
decreasing the complexity of the layout generation problem. 

 
Figure 2. An Euler path  example 

Transistor chaining is a technique that consists of grouping transistors when their 
drain/source diffusions can be shared. Figure 2 illustrates the transistor chaining 
generation where the Euler path is searched to PMOS and NMOS transistors. Dashed 
lines show examples of Euler paths in which a chain of transistors is performed 
based on the sharing of the source/drain diffusion areas. 

In this example, the two transistors chains are (Z,B,2,A,1,A,VCC,C,1,B,2,C,Z) to 
the PMOS transistors and (GND,B,3,A,Z,A,4,C,GND,B,5,C,Z) to the NMOS 
transistors. 

Its is clear that many solutions can be found to these set of transistors. In the 
approach proposed in this work, an Eulerian graph is used in order to generate the N 
solutions related to the initial population. Transistor chainings are randomly chosen 
to be used in the genetic algorithm. 

5. The Placement Parameters 

Each chromosome in the genetic algorithm is a set of parameters used in the 
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placement constraints. Parameters used in transistor placement are basically the 



description of transistors orientation and the relationship between these transistors. 
Transistor orientation means whether a transistor must be placed horizontally or 
vertically and where the drain/source contacts are located, while the relationship 
between transistors is the relative placement of a transistor in relation to each other 
transistor. 

 
Figure 3. Transistor Orientation Constraints 

Figure 3 illustrates the orientation constraints R and D. The parameter R 
represents the orientation of the transistors. R=0 indicates that the transistor must be 
placed horizontally and R=1 means that the transistor must be placed vertically.  

The parameter D indicates where drain/source diffusion areas are located. D=0 
means that the transistor source area is located in the left/top and D=1 means that the 
drain area is located in the left/top of the transistor. 

 
Figure 4. Transistor behavior constraints 

The relationship between transistors is shown in Figure 4. The parameters C and 
Pc are used to describe these relationship. C indicates whether the placement 
constraints are related to horizontal or vertical coordinates and Pc represents the 
relative position of these transistors. 

Taking as example the transistors M1, M2 and M3 illustrated in Figure 4, 
C[M1,M2] = 0 means that the transistors M1 and M2 are placed side by side 
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side of M2. In other words,  XM1 < XM2 and there is no requirements to coordinate Y.  

The same idea is used when C[M1,M3] = 1 and Pc[M1,M3] = 1. In this case YM1 
> YM3 and any horizontal constraint is applied. Table 1 shows the possible 
constraints resulting of the parameters C and Pc.  

 
Table 1. Parameters to the transistors relationship 

Based on these parameters, each chromosome is a binary vector containing 
information about orientation and relationship between transistors. The size of a 
chromosome is given by the Equation 1:  

 
 

 

(1) 

parameters R and D, and the second part is related to parameters C and Pc. 

6. The Mathematical Modeling 

Once the parameters are defined in the chromosomes, they can be applied in an 
algebraic modeling in order to obtain the optimal placement solution with the respect 
to the given parameters and constraints. The main idea of this approach is to use a 
nonlinear solver to find the solution to the placement of transistors.  
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where T is the number of transistors. The first part of the equation 1 is related to 

Parameters Constraints 

C Pc Horizontal Vertical 

0 0 X1 < X2 - 

0 1 X1 > X2 - 

1 0 - Y1 < Y2 

1 1 - Y1 > Y2 

 

horizontally and Pc[M1,M2] = 0 indicates that the transistor M1 is placed in the left 



Figure 5. Width and height transistor parameters  

Figure 5 shows the width and the height parameters used in the placement 
constraints. To each transistor i∈T, the parameters wdi and hdi are the width and the 
height of the diffusion area while wpi and hpi are the parameters to the polysilicon 
area. Besides that, other three integer parameters draini, sourcei and gatei represent 
the connections of the transistors and the parameter typei is also used to indicate if 
the transistor i is PMOS or NMOS. 

The variables Xi and Yi are the central coordinates of the transistor i. Their values 
are given by the minimization of the objective function. The goal of the used 
objective function is to find the optimal Xi and Yi by the minimization of the wire 

The constraints are divided in three groups: 1) Boundary Constraints, 2) 
Neighborhood Constraints and 3) Connections Constraints. These constraints are 
presented in the following sections. 

6.1 Boundary Constraints  

Figure 6.  A Row-based boundary representation 
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lengths. The specification of the objective function is given in more detail in Section 6.



these structures, layout boundaries must be regular in order to allow the connection 
between adjacent cells at the moment of the entire circuit generation. Figure 6 
illustrates the boundaries in a row-based layout. 

Regions of PMOS and NMOS transistors may be determined by the implant 
areas and boundary constraints may be formulated according to the edges of these 
areas. Thus, the boundary constraints are given by  

 

 

 
where Bleft, Bright, Bbottom and Btop x y

i i

width and height of the transistor.  

6.2 Neighborhood Constraints  

Neighborhood constraints are related to the possibility to connect transistors 
together. These constraints are separated into categories and they are responsible to 
give the correct distance between two adjacent transistors.  

 
In order to verify the possibility of connection between transistors, the variables 

left, right, top and bottom are used. They are given by the following equations: 
 

 

 

 
i i

draini, sourcei and gatei are integer parameters related to the list of connections C.  
 
Considering Kc the number of points of the connection c and assuming that c∈C, 
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The layout of standard-cells and macro-blocks are usually structured in rows. In 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

are are the edges of the placement region, Δ  and Δ  
the minimal distances from the transistor i to the boundaries, W  and H  are the 

where i∈T, R  and D  are the parameters given by the current chromosome. 

it is possible to know when two transistors are connected in serial or parallel. Thus, 



two transistors are in serial always that Kc=2. In all other cases the transistor are in 
parallel or they are not connected. 

Figure 7.  Graphical Repesentation of the neighborhood constraints 
 

Table 2. Horizontal neighborhood constraints 

339 A Transistor Placement Technique Using Genetic Algorithm

Orientation 
# 

Ri Rj 
Kc Situation Constraint 

1 0 0 =2  

2 0 0 ≠2 

righti 

= 
lefti 

 

3 0 0  
righti 

≠ 
lefti  

4 1 0   
 

5 0 1   
 

6 1 1  

Different 
top, bottom 

or 
left/right 

 

7 1 1  

Top, 
bottom and 

left/right 
equal 

 

 

 

 

 

 

 

 



 
From the definition of these variables, it is possible to understand how the 

neighborhood constraints are formulated. Table 1 presents the neighborhood 
constraints where sp is the spacing between polysilicon lines, sdc is the distance 
between a polysilicon line and a contact, wc is the width of a contact, sd is the 
spacing of two diffusion areas and sdp is the distance between a polysilicon line and 
a diffusion area. 

 
Neighborhood constraints are separated in categories with the effort to deal with 

every possible relationship between two transistors. Only horizontal constraints are 
discussed here but similar equations are used vertically. 

Seven different constraints are shown in Figure 7 and Table 2. In the case of 
Ri=0 and Rj=0, equation 1 treats situations where transistors are in serie, equation 2 
deals with parallel transistors and equation 3 takes situations where transistors are 
not connected. 

The equation 3 and 4 treat situations where there are different transistor 
orientation parameters (Ri≠Rj). In these cases, the sharing of diffusion areas is 
impossible.  

 
When transistors are placed vertically (Ri=1 and Rj=1), the connection between 

two transistors is possible only whether topi=topj , righti=lefti and bottomi=bottomj,  
and  (Equation 6). Equation 7 takes all other cases to Ri=1 and Rj=1, in which the 
connection between transistors cannot be done. 

6.3 Connection Constraints 

 

Figure 8. The Δni  Representation 

Let n be the number of connections and m the number of transistors, the position 
to gate, drain and source can be inserted in matrix notation to the horizontal and 
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coordinates X and Y of the nets are given by  
 

 

(8) 

 

 

where i∈T and Δni

where the connection is located as shown in Figure 8. The matrix to vertical 
coordinates Qy is composed based on the same idea. 

6.4 The Objective Function  

The goal of the proposed technique is to reduce the wire length connecting the 
transistors. Thus, the objective function is based on the connection constraints and it 
is obtained by  

   

 

c

connection c. The wire length of a connection c is calculated by the coordinates of 
the points of a net in the matrices Qx and Qy. Then, S(c) is given by  

 
  

 
and  
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 is the distance from the center of the transistor to the point 

where S(c) is the half perimeter wire length and W  is the weight of the 

(9) 

(10) 

(11) 

(12) 

vertical coordinates, Qx and Qy. Thus, Qx and Qy are n×m matrices where the 



 
  

transistor i. The same principle is used to I(c,j) with the connection c and the 
transistor j. 

7. Cell Placement Results 

Figure 9. Preliminary placement examples 

Figure 9 shows the placement of two cells using the proposed algorithm. The 
transistor placement of a 12-transistor XOR gate is shown in (a)  and the placement 
of a 10-transistor XOR is shown in (b). These cells were routed with a simple routing 
algorithm. The compaction step is under development and will be applied in the 
layout as a last step. 

 
Table 3. Placement results 

Cell Area (µm)  
 

Gain Execution 

 Name [10] Proposed (%) Time 

NOR2 7.9 8.1 -3 2s 

OR2 10.8 10.9 -1 1m 15s 

AOI22 13.6 13.0 4 4m 10s 

AOI222 19.4 17.9 8 18m 30s 

Full Adder 52.3 45.1 13 3h 15m 
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(13) 

where I(c,i) are binary values indicating whether the wire c is connected to the 



 
 
Table 3 shows some results of the comparison between the proposed technique 

and a pure Eulerian placement algorithm used in [10]. Results show that the 
proposed technique deals with the transistor placement problem. The area gain is 
around 4.5 % .  

The drawback of this technique is the execution time. While a pure Eulerian 
algorithm execute the placement task very quickly, the proposed technique take 
hours in some cases to solve the placement problem. As the genetic algorithm works 
with random information, the execution time presented in Table 3 is the average time 
of at least 5 executions of each cell. 

The used mathematical language is the AMPL [11] associated to a linear/non 
linear problem solver called MINOS [12]. Academic versions of these softwares 
were used in this work. 

8. Conclusion 

This work presents an approach where a genetic algorithm is used in association 
with mathematical programming to address the transistor placement problem. The 
following points summarize the proposed approach when working with the transistor 
placement problem: 

1. The search for the Euler path is used to create transistor chains. A set of these 
chains is chosen randomly and used as initial set of possible solutions;  

2. A genetic algorithm is used to reduce the search space of solutions;  
3.   An analytical programming is solved by a non-linear solver and the solution 

is the optimal position to each transistor.  
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